【題目】已知E、F分別在正方體ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1 , 則面AEF與面ABC所成的二面角的正切值等于

【答案】
【解析】解:由題意畫出圖形如圖:
因?yàn)镋、F分別在正方體ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1 ,
延長CB、FE交點(diǎn)為S連接AS,過B作BP⊥AS連接PE,所以面AEF與面ABC所成的二面角就是∠BPE,因?yàn)锽1E=2EB,CF=2FC1 ,
所以BE:CF=1:2
所以SB:SC=1:2,
設(shè)正方體的棱長為:a,所以AS= a,BP= a,BE= ,在RT△PBE中,tan∠EPB= = =
所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上的點(diǎn),離心率.

(1)求橢圓的方程;

(2)點(diǎn)在橢圓上,若點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,連接并延長與橢圓的另一個交點(diǎn)為,連接,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【浙江省名校協(xié)作體2017屆高三上學(xué)期聯(lián)考】已知橢圓,經(jīng)過橢圓上一點(diǎn)的直線與橢圓有且只有一個公共點(diǎn),且點(diǎn)橫坐標(biāo)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

2)若橢圓的一條動弦,為坐標(biāo)原點(diǎn),面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高一年級期中考試的學(xué)生中抽出60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[40,50),[50,60)…,[80,90),[90,100],然后畫出如圖所示部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)求第四小組的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及60分以上為及格)和平均分;
(3)把從[80,90)分?jǐn)?shù)段選取的最高分的兩人組成B組,[90,100]分?jǐn)?shù)段的學(xué)生組成C組,現(xiàn)從B,C兩組中選兩人參加科普知識競賽,求這兩個學(xué)生都來自C組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求的軌跡

(2)過軌跡上任意一點(diǎn)作圓的切線,設(shè)直線的斜率分別是,試問在三個斜率都存在且不為0的條件下, 是否是定值,請說明理由,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】余江人熱情好客,凡逢喜事,一定要擺上酒宴,請親朋好友、同事高鄰來助興慶賀.歡度佳節(jié),迎親嫁女,喬遷新居,學(xué)業(yè)有成,仕途風(fēng)順,添丁加口,朋友相聚,都要以酒示意,借酒表達(dá)內(nèi)心的歡喜.而凡有酒宴,一定要劃拳,劃拳是余江酒文化的特色.余江人劃拳注重禮節(jié),形式多樣;講究規(guī)矩,蘊(yùn)含著濃厚的傳統(tǒng)文化和淳樸的民俗特色.在禮節(jié)上,講究“尊老尚賢敬遠(yuǎn)客”一般是東道主自己或委托桌上一位酒量好的劃拳高手來“做關(guān)”,——就是依次陪桌上會劃拳的劃一年數(shù)十二拳(也有半年數(shù)六拳).十二拳之后晚輩還要敬長輩一杯酒.

再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他還要敬他叔叔一杯,規(guī)則如下:前兩拳只有小明猜叔贏叔叔,叔叔才會喝下這杯敬酒,且小明也要陪喝,如果第一拳小明沒猜到,則小明喝下第一杯酒,繼續(xù)猜第二拳,沒猜到繼續(xù)喝第二杯,但第三拳不管誰贏雙方同飲自己杯中酒,假設(shè)小明每拳贏叔叔的概率為,問在敬酒這環(huán)節(jié)小明喝酒三杯的概率是多少( )

(猜拳只是一種娛樂,喝酒千萬不要過量。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間四邊形, 分別在上,

(1),異面直線所成的角的大小為,求所成的角的大;

(2)當(dāng)四邊形是平面四邊形時,試判斷三條直線的位置關(guān)系,并選擇其中一種位置關(guān)系說明理由;

(3)已知當(dāng),異面直線所成角為,當(dāng)四邊形是平行四邊形時,試判斷點(diǎn)在什么位置時,四邊形的面積最大,試求出最大面積并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為 (為參數(shù))

(1)求點(diǎn)的直角坐標(biāo);化曲線的參數(shù)方程為普通方程;

(2)設(shè)為曲線上一動點(diǎn),以為對角線的矩形的一邊垂直于極軸,求矩形周長的最小值,及此時點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 有一個面是多邊形,其余各面都是三角形,由這些面圍成的幾何體是棱錐

B. 有兩個面平行且相似,其余各面都是梯形的多面體是棱臺

C. 如果一個棱錐的各個側(cè)面都是等邊三角形,那么這個棱錐可能為六棱錐

D. 有兩個相鄰側(cè)面是矩形的棱柱是直棱柱

查看答案和解析>>

同步練習(xí)冊答案