如圖,設(shè)E:=1(a>b>0)的焦點為F1與F2,且P∈E,∠F1PF2=2θ.求證:△PF1F2的面積S=b2tanθ.
見解析
設(shè)|PF1|=r1,|PF2|=r2,則S=r1r2sin2θ.又|F1F2|=2c,
由余弦定理有(2c)2-2r1r2cos2θ=(r1+r2)2-2r1r2-2r1r2cos2θ=(2a)2-2r1r2(1+cos2θ),于是2r1r2(1+cos2θ)=4a2-4c2=4b2.
所以r1r2.這樣即有S=sin2θ=b2=b2tanθ.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的右焦點與拋物線的焦點重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上一點,若過點M(2,0)的直線與橢圓相交于不同兩點A和B,且滿足(O為坐標(biāo)原點),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓=1的頂點,過坐標(biāo)原點的直線交橢圓于P、A兩點,其中P在第一象限,過P作x軸的垂線,垂足為C,連結(jié)AC,并延長交橢圓于點B,設(shè)直線PA的斜率為k.

(1)若直線PA平分線段MN,求k的值;
(2)當(dāng)k=2時,求點P到直線AB的距離d;
(3)對任意k>0,求證:PA⊥PB..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中點在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.

(1)求橢圓C的方程;
(2)己知點P(2,3),Q(2,-3)在橢圓上,點A、B是橢圓上不同的兩個動點,且滿足APQ=BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形CDEF內(nèi)接于橢圓,且它的四條邊與坐標(biāo)軸平行,正方形GHPQ的頂點G,H在橢圓上,頂點P,Q在正方形的邊EF上.且CD=2PQ=

(1)求橢圓的方程;
(2)已知點M(2,1),平行于OM的直線l在y軸上的截距為m(m:≠0),l交橢圓于A,B兩個不同點,求證:直線MA,MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓,圓,過橢圓上任一與頂點不重合的點P引圓O的兩條切線,切點分別為A,B,直線AB與x軸,y軸分別交于點M,N,則_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:+y2=1(a>1)的上頂點為M(0,1),兩條過M的動弦MA、MB滿足MA⊥MB.
(1)當(dāng)坐標(biāo)原點到橢圓E的準(zhǔn)線距離最短時,求橢圓E的方程;
(2)若Rt△MAB面積的最大值為,求a;
(3)對于給定的實數(shù)a(a>1),動直線AB是否經(jīng)過一定點?如果經(jīng)過,求出定點坐標(biāo)(用a表示);反之,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.

(1)求橢圓C的方程;
(2)求△ABP面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點,A,B分別是橢圓E的左、右頂點,且+5=0.
 
(1)求橢圓E的離心率; (2)已知點D(1,0)為線段OF2的中點,M為橢圓E上的動點(異于點A、B),連結(jié)MF1并延長交橢圓E于點N,連結(jié)MD、ND并分別延長交橢圓E于點P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案