13.已知圓x2+y2+2x-2y+2a=0截直線x+y+2=0所得弦長(zhǎng)為4,則實(shí)數(shù)a的值是( 。
A.-4B.-3C.-2D.-1

分析 把圓的方程化為標(biāo)準(zhǔn)形式,求出弦心距,再由條件根據(jù)弦長(zhǎng)公式求得a的值.

解答 解:圓x2+y2+2x-2y+2a=0 即 (x+1)2+(y-1)2=2-2a,
故弦心距d=$\frac{|-1+1+2|}{\sqrt{2}}$=$\sqrt{2}$.
再由弦長(zhǎng)公式可得 2-2a=2+4,∴a=-2,
故選:C.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,弦長(zhǎng)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=eax+λlnx,其中a<0,0<λ<$\frac{1}{e}$,e是自然對(duì)數(shù)的底數(shù)
(Ⅰ)求證:函數(shù)f(x)有兩個(gè)極值點(diǎn);
(Ⅱ)若-e≤a<0,求證:函數(shù)f(x)有唯一零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.與橢圓$\frac{{x}^{2}}{4}$+y2=1共焦點(diǎn)且過(guò)點(diǎn)P(2,1)的雙曲線方程是( 。
A.$\frac{{x}^{2}}{4}$-y2=1B.$\frac{{x}^{2}}{3}$-y2=1C.$\frac{{x}^{2}}{2}$-y2=1D.x2-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如果將函數(shù)f(x)=sin2x圖象向左平移φ(φ>0)個(gè)單位,函數(shù)g(x)=cos(2x-$\frac{π}{6}$)圖象向右平移φ個(gè)長(zhǎng)度單位后,二者能夠完全重合,則φ的最小值為$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},則A∩(∁UB)=( 。
A.{1,2,5,6}B.{1,2,3,4}C.{2}D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若直線(a+1)x+ay=0與直線ax+2y=1垂直,則實(shí)數(shù)a=0或-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=x-log${\;}_{\frac{1}{2}}$x的零點(diǎn)個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.無(wú)數(shù)多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中,已知tanA=$\sqrt{3}$,則cos5A=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某石材加工廠可以把甲、乙兩種類(lèi)型的大理石板加工成A,B,C三種規(guī)格的小石板,每種類(lèi)型的大理石板可以同時(shí)加工成三種規(guī)格小石板的塊數(shù)如表所示:
板材類(lèi)型ABC
甲型石板(塊)124
乙型石板(塊)215
某客戶(hù)至少需要訂購(gòu)A,B兩種規(guī)格的石板分別為20塊和22塊,至多需要C規(guī)格的石板100塊,分別用x,y表示甲、乙兩種類(lèi)型的石板數(shù).
(1)用x,y列出滿足客戶(hù)要求的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(2)加工廠為滿足客戶(hù)的需求,需要加工甲、乙兩種類(lèi)型的石板各多少塊,才能使所用石板總數(shù)最少?

查看答案和解析>>

同步練習(xí)冊(cè)答案