【題目】定義在D上的函數(shù)f(x),如果滿足對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界,已知函數(shù)f(x)=1+x+ax2
(1)當a=﹣1時,求函數(shù)f(x)在(﹣∞,0)上的值域,判斷函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù),并說明理由;
(2)若函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
【答案】(1)見解析;
(2)[﹣,﹣].
【解析】
試題(1)當a=﹣1時,函數(shù)表達式為f(x)=1+x﹣x2,可得f(x)在(﹣∞,0)上是單調(diào)增函數(shù),它的值域為(﹣∞,1),從而|f(x)|的取值范圍是[0,+∞),因此不存在常數(shù)M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函數(shù).
(2)函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),即﹣3≤f(x)≤3在[1,4]上恒成立,代入函數(shù)表達式并化簡整理,得﹣﹣≤a≤﹣在[1,4]上恒成立,接下來利用換元法結(jié)合二次函數(shù)在閉區(qū)間上最值的求法,得到(﹣﹣)max=﹣,(﹣)min=﹣,所以,實數(shù)a的取值范圍是[﹣,﹣].
解:(1)當a=﹣1時,函數(shù)f(x)=1+x﹣x2=﹣(x﹣)2+
∴f(x)在(﹣∞,0)上是單調(diào)增函數(shù),f(x)<f(0)=1
∴f(x)在(﹣∞,0)上的值域為(﹣∞,1)
因此|f(x)|的取值范圍是[0,+∞)
∴不存在常數(shù)M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函數(shù).
(2)若函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),
則|f(x)|≤3在[1,4]上恒成立,即﹣3≤f(x)≤3
∴﹣3≤ax2+x+1≤3
∴≤a≤,即﹣﹣≤a≤﹣在[1,4]上恒成立,
∴(﹣﹣)max≤a≤(﹣)min,
令t=,則t∈[,1]
設(shè)g(t)=﹣4t2﹣t=﹣4(t+)2+,則當t=時,g(t)的最大值為﹣
再設(shè)h(t)=2t2﹣t=2(t﹣)2﹣,則當t=時,h(t)的最小值為﹣
∴(﹣﹣)max=﹣,(﹣)min=﹣
所以,實數(shù)a的取值范圍是[﹣,﹣].
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是 ( )
A. “若,則,或”的否定是“若則,或 ”
B. a,b是兩個命題,如果a是b的充分條件,那么是的必要條件.
C. 命題“,使 得”的否定是:“,均有 ”
D. 命題“ 若,則”的否命題為真命題.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點,直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標原點),存在定點(不同于點),滿足:對于圓上任一點,都有為一常數(shù),試求所有滿足條件的點的坐標.
【答案】(1);(2)答案見解析.
【解析】試題分析:
(1)設(shè)所求直線方程為,利用圓心到直線的距離等于半徑可得關(guān)于b的方程,解方程可得,則所求直線方程為
(2)方法1:假設(shè)存在這樣的點,由題意可得,則,然后證明為常數(shù)為即可.
方法2:假設(shè)存在這樣的點,使得為常數(shù),則,據(jù)此得到關(guān)于的方程組,求解方程組可得存在點對于圓上任一點,都有為常數(shù).
試題解析:
(1)設(shè)所求直線方程為,即,
∵直線與圓相切,∴,得,
∴所求直線方程為
(2)方法1:假設(shè)存在這樣的點,
當為圓與軸左交點時,;
當為圓與軸右交點時,,
依題意,,解得,(舍去),或.
下面證明點對于圓上任一點,都有為一常數(shù).
設(shè),則,
∴ ,
從而為常數(shù).
方法2:假設(shè)存在這樣的點,使得為常數(shù),則,
∴,將代入得,
,即
對恒成立,
∴,解得或(舍去),
所以存在點對于圓上任一點,都有為常數(shù).
點睛:求定值問題常見的方法有兩種:
(1)從特殊入手,求出定值,再證明這個值與變量無關(guān).
(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)的導函數(shù)為,其中為常數(shù).
(1)當時,求的最大值,并推斷方程是否有實數(shù)解;
(2)若在區(qū)間上的最大值為-3,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓 ,點,以線段為直徑的圓內(nèi)切于圓,記點的軌跡為.
(1)求曲線的方程;
(2)直線交圓于,兩點,當為的中點時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(點均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)的定義域為R,且存在實常數(shù),使得對于定義域內(nèi)任意,都有成立,則稱此函數(shù)為“完美函數(shù)”.
(1)判斷函數(shù)是否為“完美函數(shù)”.若它是“完美函數(shù)”,求出所有的的取值的集合;若它不是,請說明理由.
(2)已知函數(shù)是“完美函數(shù)”,且是偶函數(shù).且當0時,.求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當時, 的取值范圍恰為,則稱函數(shù)是上的“優(yōu)美函數(shù)”.
函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出的值;若不是,請說明理由.
若為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.
若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線經(jīng)過點,過作直線與拋物線相切.
(1)求直線的方程;
(2)如圖,直線∥,與拋物線交于,兩點,與直線交于點,是否存在常數(shù),使.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com