【題目】已知在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(為參數(shù)),曲線的方程為.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線的極坐標(biāo)方程;
(2)曲線分別交直線和曲線于點,求的最大值及相應(yīng)的的值.
【答案】(1)..(2)時,取得最大值.
【解析】
(1)利用消參法將直線參數(shù)方程化為普通方程,利用互化公式和,將直線和曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(2)由(1)得直線的極坐標(biāo)方程為,令,得出,,進(jìn)而得出,利用降冪公式和輔助角公式,化簡得,即可求得的最大值及相應(yīng)的的值.
解:(1)由題可知,直線l的參數(shù)方程為(為參數(shù)),
消去參數(shù),得出直線的普通方程為:,
利用互化公式,
則直線的極坐標(biāo)方程為:,
由于曲線的普通方程為:,即:,
的極坐標(biāo)方程為.
(2)直線的極坐標(biāo)方程為,令,
則,即,
又,
,
即:
,
,即當(dāng)時,取得最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分15分)已知點是圓上任意一點,過點作軸的垂線,垂足為,點滿足 記點的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),點在曲線上,且直線與直線的斜率之積為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐詩是中國文學(xué)的瑰寶.為了研究計算機上唐詩分類工作中檢索關(guān)鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機抽取了500篇,統(tǒng)計了每個類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:
愛情婚姻 | 詠史懷古 | 邊塞戰(zhàn)爭 | 山水田園 | 交游送別 | 羈旅思鄉(xiāng) | 其他 | 總計 | |
篇數(shù) | 100 | 64 | 55 | 99 | 91 | 73 | 18 | 500 |
含“山”字的篇數(shù) | 51 | 48 | 21 | 69 | 48 | 30 | 4 | 271 |
含“簾”字的篇數(shù) | 21 | 2 | 0 | 0 | 7 | 3 | 5 | 38 |
含“花”字的篇數(shù) | 60 | 6 | 14 | 17 | 32 | 28 | 3 | 160 |
(1)根據(jù)上表判斷,若從《全唐詩》含“山”字的唐詩中隨機抽取一篇,則它屬于哪個類別的可能性最大,屬于哪個類別的可能性最小,并分別估計該唐詩屬于這兩個類別的概率;
(2)已知檢索關(guān)鍵字的選取規(guī)則為:
①若有超過95%的把握判斷“某字”與“某類別”有關(guān)系,則“某字”為“某類別”的關(guān)鍵字;
②若“某字”被選為“某類別”關(guān)鍵字,則由其對應(yīng)列聯(lián)表得到的的觀測值越大,排名就越靠前;
設(shè)“山”“簾”“花”和“愛情婚姻”對應(yīng)的觀測值分別為,,.已知,,請完成下面列聯(lián)表,并從上述三個字中選出“愛情婚姻”類別的關(guān)鍵字并排名.
屬于“愛情婚姻”類 | 不屬于“愛情婚姻”類 | 總計 | |
含“花”字的篇數(shù) | |||
不含“花”的篇數(shù) | |||
總計 |
附:,其中.
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上點處的切線方程為.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)和為拋物線上的兩個動點,其中且,線段的垂直平分線與軸交于點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個頂點和兩個焦點構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點,試問,是否存在軸上的點,使得對任意的,為定值,若存在,求出點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)基地有五臺機器,現(xiàn)有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.
①甲只能承擔(dān)第四項工作
②乙不能承擔(dān)第二項工作
③丙可以不承擔(dān)第三項工作
④丁可以承擔(dān)第三項工作
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機企業(yè)為確定下一年度投入某種產(chǎn)品的研發(fā)費用,統(tǒng)計了近年投入的年研發(fā)費用千萬元與年銷售量千萬件的數(shù)據(jù),得到散點圖1,對數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計量的值如圖2:
(1)利用散點圖判斷和哪一個更適合作為年研發(fā)費用和年銷售量的回歸類型(不必說明理由),并根據(jù)數(shù)據(jù),求出與的回歸方程;
(2)已知企業(yè)年利潤千萬元與的關(guān)系式為(其中為自然對數(shù)的底數(shù)),根據(jù)(1)的結(jié)果,要使得該企業(yè)下一年的年利潤最大,預(yù)計下一年應(yīng)投入多少研發(fā)費用?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,SA=SB=AB=BC=CA=6,且側(cè)面ASB⊥底面ABC,則三棱錐S-ABC外接球的表面積為( )
A. 60π B. 56π C. 52π D. 48π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為的函數(shù),若同時滿足下列條件:①在內(nèi)有單調(diào)性;②存在區(qū)間,使在區(qū)間上的值域也為,則稱為上的精彩函數(shù),為函數(shù)的精彩區(qū)間.
(1)求精彩區(qū)間符合條件的精彩區(qū)間;
(2)判斷函數(shù)是否為精彩函數(shù)?并說明理由.
(3)若函數(shù)是精彩函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com