分析 a=bcosC+ccosB,又a=2cosC+csinB,b=2,可得B.由余弦定理可得:b2=a2+c2-2accosB,利用基本不等式的性質(zhì)可得:ac,即可得出三角形面積的最大值.
解答 解:∵a=bcosC+ccosB,又a=2cosC+csinB,b=2,
∴cosB=sinB,
∴tanB=1,B∈(0,π).
由余弦定理可得:b2=a2+c2-2accosB
∴4≥2ac-$\sqrt{2}$ac,當(dāng)且僅當(dāng)a=c時取等號.
∴ac≤4+2$\sqrt{2}$.
∴S△ABC=$\frac{1}{2}acsinB$$≤\frac{1}{2}×(4+2\sqrt{2})×\frac{\sqrt{2}}{2}$=$\sqrt{2}$+1.
故答案為:$\sqrt{2}$+1.
點評 本題考查了余弦定理、三角形面積的計算公式、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}>\frac{1}$ | B. | log2(a-b)>0 | C. | 2a-b<1 | D. | ${({\frac{1}{3}})^a}<{({\frac{1}{2}})^b}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2007 | B. | 2006 | C. | 2005 | D. | 2009 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{3\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com