11.在正方體ABCD-A1B1C1D1中,O為正方形ABCD中心,則A1O與平面ABCD所成角的正切值為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{\sqrt{3}}{3}$

分析 說明A1O與平面ABCD所成角,然后通過求解三角形求出A1O與平面ADD1A1所成的角的正切值.

解答 解:
設(shè)正方體ABCD-A1B1C1D1中棱長為2,
連結(jié)AC,A1O在底面ABCD的射影為:AO,
則A1O與平面ABCD所成角為:∠A1OA,
可得AO=$\sqrt{2}$,
tan∠A1OA=$\frac{{A}_{1}A}{AO}$=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
故選:A.

點評 本題考查線面角的余弦值的求法,是基礎(chǔ)題,解題時要認真審題,也可以利用向量法求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=ax3+6x2+(a-1)x-5有極值的充要條件是(  )
A.a=-3或a=4B.-3<a<4C.a>4或a<-3D.a∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.
(1)將下面的2×2列聯(lián)表補充完整;
出生時間
性別
晚上白天合計
男嬰
女嬰
合計
(2)能否在犯錯誤的概率不超過0.1的前提下認為嬰兒性別與出生時間有關(guān)系?
參考公式:(1)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
(2)獨立性檢驗的臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f (x)及其導數(shù)f′(x),若存在x0,使得f (x0)=f′(x0),則稱x0是f (x)的一個“巧值點”,下列函數(shù)中,存在“巧值點”的是①②③⑤.(填上所有正確的序號)
①f (x)=x2,
②f(x)=sinx,
③f (x)=lnx,
④f (x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.化簡:$\sqrt{\frac{1+cosα}{1-cosα}}$+$\sqrt{\frac{1-cosα}{1+cosα}}$(π<α<$\frac{3π}{2}$)=-$\frac{2}{sinα}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)i是虛數(shù)單位,${i^7}-\frac{2}{i}$=(  )
A.-iB.-3iC.iD.3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.比較下列各組數(shù)的大。
(1)1.9與1.9-3
(2)0.7${\;}^{2-\sqrt{3}}$與0.70.3
(3)0.60.4與0.40.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.數(shù)列{(-1)n(2n-1)}的前2 016項和S2016等于( 。
A.-2 016B.2 016C.-2 015D.2 015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.計算:log29•log38=(  )
A.6B.8C.10D.1

查看答案和解析>>

同步練習冊答案