已知向量
a
、
b
滿足|
a
|=1,|
a
+
b
|=3,則|
b
|的取值范圍為(  )
A、[1,2]
B、[0,4]
C、[1,3]
D、[2,4]
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:作向量
AB
=
a
+
b
,
CB
=
a
,則
AC
=
b
,所以由圖可看出當(dāng)C點(diǎn)在線段AB上時(shí),|
b
|
最小,并且最小是2;當(dāng)C點(diǎn)在AB延長線上時(shí)|
b
|
最大,最大為4,這樣便可求得|
b
|
的取值范圍.
解答: 解:如圖,
AC
=
b
,
CB
=
a
AB
=
a
+
b
,當(dāng)C點(diǎn)在線段AB上時(shí),|
b
|
最小為3-1=2;
當(dāng)C點(diǎn)在AB延長線上時(shí),|
b
|
最大為3+1=4;
|
b
|
的取值范圍為[2,4].
故選D.
點(diǎn)評(píng):本題考查向量加法的幾何意義,對(duì)所作向量
AB
,
CB
,
AC
,要知道|
AB
|,|
CB
|
是定值,|
AC
|
是可變化的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2x-
π
3
)的圖象為C,給出以下結(jié)論:
①圖象C關(guān)于直線x=
11
12
π對(duì)稱;
②圖象C關(guān)于點(diǎn)(
3
,0)對(duì)稱;
③函數(shù)f(x)在區(qū)間(-
π
12
12
)內(nèi)是增函數(shù);
④由y=sin2x的圖象向右平移
π
3
個(gè)單位長度可以得到圖象C.
其中正確的是(  )
A、①②④B、①②③④
C、①②③D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2<0},B={x|x<a},若A⊆B,則實(shí)數(shù)a的取值范圍是( 。
A、{x|a≥2}
B、{x|a>2}
C、{a|a≥1}
D、{a|a≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2+2x-3(x≤0)
-2+log2x(x>0)
的零點(diǎn)個(gè)數(shù)為(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,a2+a4=10,則使Sn>527成立n的最小值是( 。
A、16B、17C、22D、23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,sinA:sinB:sinC=3:5:7且△ABC的周長為30,則△ABC的面積為(  )
A、
15
3
14
B、
13
3
4
C、13
3
D、15
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=logax+1(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線
x
m
+
y
n
-4=0(m>0,n>0)上,則m+n的最小值為(  )
A、2+
2
B、2
C、1
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中既不是奇函數(shù)也不是偶函數(shù)的是( 。
A、y=2|x|
B、y=-x3
C、y=2-x+2x
D、y=lg
1
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
4x
4x+2
,
(1)計(jì)算f(x)+f(1-x)=
 

(2)若{an}滿足an=f(
n
1001
),則S1000=
 

(3)f(
1
1000
)+f(
2
1000
)+f(
3
1000
)+…+f(
999
1000
)=
 
;
(4)一般情況下,若Sn=f(
1
n+1
)+f(
2
n+1
)+f(
3
n+1
)+…+f(
n
n+1
),則Sn=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案