設(shè)函數(shù)f (x)=log2( ax-bx),且f(1)=1,f(2)=log212
(1)求a,b的值.
(2)當(dāng)x∈[1,2]時,求f(x)的最大值.
(3)p為何值時,函數(shù)g(x)=ax-bx+p與x軸有兩個交點(diǎn).

解:(1)由題意,列方程組

求得a=4,b=2..
(2)由(1)知f(x)=log2(4x-2x)=
∵1≤x≤2∴2≤2x≤4
故t=在[1,2]上單調(diào)遞減
∴f(x)的最大值=f(2)=log212
(3)令g(x)=4x-2x+p=0,則4x-2x+p=0有兩個不同解.
令t=2x則t>0故t2-t+p=0有兩個不同正根
即△=1-4p>0且p>0,
解得0<p<1/4.
分析:(1)由已知f(1)=1,f(2)=log212代入到f(x)中求得a、b的值即可;
(2)利用(1)求出f(x),利用換元法求得最小值即可;
(3)令g(x)=4x-2x+p=0,則4x-2x+p=0有兩個不同解.利用換元法:令t=2x則t>0故t2-t+p=0有兩個不同正根轉(zhuǎn)化為二次方程的問題解決即可.
點(diǎn)評:考查學(xué)生利用待定系數(shù)法求函數(shù)解析式的能力,理解函數(shù)極值及其幾何意義的能力,解答關(guān)鍵是利用換元法進(jìn)行轉(zhuǎn)化的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零數(shù)l使得對于任意x∈M(M⊆D)有x+l∈D且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)
x
為R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù)
③如果定義域?yàn)閇1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞)其中正確的命題是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有下面四個命題:
①曲線y=-x2+2x+4在點(diǎn)(1,5)處的切線的傾斜角為45°;
②已知直線l,m,平面α,β,若l⊥α,m?β,l⊥m,則α∥β;
③設(shè)函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
則f(x+1)一定是奇函數(shù);
④如果點(diǎn)P到點(diǎn)A(
1
2
,0),B(
1
2
,2)
及直線x=-
1
2
的距離相等,那么滿足條件的點(diǎn)P有且只有1個.
其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濱州一模)設(shè)函數(shù)f(x)=p(x-
1x
)-2lnx,g(x)=x2
(I)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求實(shí)數(shù)p的值;
(II)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+4x+5的圖象在x=1處的切線為l,則圓2x2+2y2-8x-8y+15=0上的點(diǎn)到直線l的最短距離為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選講選做題)設(shè)函數(shù)f(x)=|x-a|-2,若不等式|f(x)|<1的解集為(-2,0)∪(2,4),則實(shí)數(shù)a=
1
1

B.(幾何證明選講選做題)如右圖,已知PB是圓O的切線,A是切點(diǎn),D是弧AC上一點(diǎn),若∠BAC=70°,則∠ADC=
110°
110°

C.(坐標(biāo)系與參數(shù)方程)極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin(θ+
π
6
)=2,則極點(diǎn)在直線l上的射影的極坐標(biāo)是
(2,
π
3
(2,
π
3

查看答案和解析>>

同步練習(xí)冊答案