已知數(shù)列{an}的通項(xiàng)公式為an=2n-1
(1)求證:{an}是等差數(shù)列;
(2)求{an}的前n項(xiàng)和Sn
(3)設(shè)數(shù)學(xué)公式,試求數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式

解:(1)a1=2×1-1=1;當(dāng)n≥2時(shí),an-an-1=2n-1-[2(n-1)-1]=2為常數(shù),∴數(shù)列{an}是以a1=2×1-1=1為首項(xiàng),2為公差的等差數(shù)列.
(2)根據(jù)等差數(shù)列的前n項(xiàng)和公式得=n2
(3)∵==n,∴==,
++…+=+…+=1-=
分析:(1)利用定義只要證明當(dāng)n≥2時(shí),an-an-1為常數(shù)即可.
(2)由等差數(shù)列的前n項(xiàng)和公式求出即可.
(3)因?yàn)閎n=n,所以由裂項(xiàng)求和即可.
點(diǎn)評:本題考查了等差數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式及裂項(xiàng)求和,理解和掌握以上公式和方法是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)為an=2n-1,Sn為數(shù)列{an}的前n項(xiàng)和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項(xiàng)和的取值范圍為( 。
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
,
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項(xiàng)公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n-5,則|a1|+|a2|+…+|a10|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=
1
n+1
+
n
求它的前n項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊答案