已知橢圓的方程為數(shù)學(xué)公式+數(shù)學(xué)公式=1,焦點(diǎn)在x軸上,則m的取值范圍是


  1. A.
    m>0
  2. B.
    m=16
  3. C.
    0<m<16
  4. D.
    m>16
C
分析:先根據(jù)橢圓的焦點(diǎn)在x軸上16>m,同時(shí)根據(jù)m>0,兩個(gè)范圍取交集即可得出答案.
解答:橢圓的焦點(diǎn)在x軸上
∴16>m,即m<16,
又∵m>0
∴m的取值范圍:0<m<16.
故選C.
點(diǎn)評(píng):本題主要考查橢圓的標(biāo)準(zhǔn)方程的問(wèn)題.即對(duì)于橢圓標(biāo)準(zhǔn)方程,當(dāng)焦點(diǎn)在x軸上時(shí),a>b;當(dāng)焦點(diǎn)在y軸上時(shí),a<b.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓Γ的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,A(0,b)、B(0,-b)和Q(a,0)為Γ的三個(gè)頂點(diǎn).
(1)若點(diǎn)M滿(mǎn)足
AM
=
1
2
(
AQ
+
AB
)
,求點(diǎn)M的坐標(biāo);
(2)設(shè)直線(xiàn)l1:y=k1x+p交橢圓Γ于C、D兩點(diǎn),交直線(xiàn)l2:y=k2x于點(diǎn)E.若k1k2=-
b2
a2
,證明:E為CD的中點(diǎn);
(3)設(shè)點(diǎn)P在橢圓Γ內(nèi)且不在x軸上,如何構(gòu)作過(guò)PQ中點(diǎn)F的直線(xiàn)l,使得l與橢圓Γ的兩個(gè)交點(diǎn)P1、P2滿(mǎn)足
PP1
+
PP2
=
PQ
PP1
+
PP2
=
PQ
?令a=10,b=5,點(diǎn)P的坐標(biāo)是(-8,-1),若橢圓Γ上的點(diǎn)P1、P2滿(mǎn)足
PP1
+
PP2
=
PQ
,求點(diǎn)P1、P2的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇一模)已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,過(guò)橢圓的右焦點(diǎn)且與x軸垂直的直線(xiàn)與橢圓交于P、Q兩點(diǎn),橢圓的右準(zhǔn)線(xiàn)與x軸交于點(diǎn)M,若△PQM為正三角形,則橢圓的離心率等于
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的方程為
x2
16
+
y2
25
=1
,則此橢圓的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河西區(qū)一模)已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0),離心率e=
2
2
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),過(guò)橢圓的左焦點(diǎn)F1且垂直于長(zhǎng)軸的直線(xiàn)交橢圓于M、N兩點(diǎn),且|MN|=
2

(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線(xiàn)l與橢圓相交于P,Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ.試探究點(diǎn)O到直線(xiàn)l的距離是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的方程為
x2
3
+
y2
4
=1,則該橢圓的焦點(diǎn)坐標(biāo)為( 。
A、(0,±1)
B、(0,±
7
C、(±1,0)
D、(±
7
,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案