【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻(xiàn).為調(diào)查中學(xué)生對這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調(diào)查結(jié)果如下:
0項 | 1項 | 2項 | 3項 | 4項 | 5項 | 5項以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?
比較了解 | 不太了解 | 合計 | |
理科生 | |||
文科生 | |||
合計 |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數(shù);
(ii)從10人的樣本中隨機(jī)抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
【答案】(1)見解析;(2) (i)文科生3人,理科生7人 (ii)見解析
【解析】
(1)寫出列聯(lián)表后可計算,根據(jù)預(yù)測值表可得沒有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān).
(2)(i)文科生與理科生的比為,據(jù)此可計算出文科生和理科生的人數(shù).
(ii)利用超幾何分布可計算的分布列及其數(shù)學(xué)期望.
解:(1)依題意填寫列聯(lián)表如下:
比較了解 | 不太了解 | 合計 | |
理科生 | 42 | 28 | 70 |
文科生 | 12 | 18 | 30 |
合計 | 54 | 46 | 100 |
計算,
沒有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān).
(2)(i)抽取的文科生人數(shù)是(人),理科生人數(shù)是(人).
(ii)的可能取值為0,1,2,3,
則,
,
,
.
其分布列為
| 0 | 1 | 2 | 3 |
|
|
|
|
|
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,邊長為a的空間四邊形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,則異面直線AD與BC所成角的大小為( 。
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(t為參數(shù)),點A(1,0),B(3,),若以直角坐標(biāo)系xOy的O點為極點,x軸正方向為極軸,且長度單位相同,建立極坐標(biāo)系.
(1)求直線AB的極坐標(biāo)方程;
(2)求直線AB與曲線C交點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an=(n∈N*,n≥2),數(shù)列{bn}滿足關(guān)系式bn=(n∈N*).
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十八大以來,脫貧工作取得巨大成效,全國農(nóng)村貧困人口大幅減少.如圖的統(tǒng)計圖反映了2012﹣2019年我國農(nóng)村貧困人口和農(nóng)村貧困發(fā)生率的變化情況(注:貧困發(fā)生率=貧困人數(shù)(人)÷統(tǒng)計人數(shù)(人)×100%).根據(jù)統(tǒng)計圖提供的信息,下列推斷不正確的是( )
A.2012﹣2019年,全國農(nóng)村貧困人口逐年遞減
B.2013﹣2019年,全國農(nóng)村貧困發(fā)生率較上年下降最多的是2013年
C.2012﹣2019年,全國農(nóng)村貧困人口數(shù)累計減少9348萬
D.2019年,全國各省份的農(nóng)村貧困發(fā)生率都不可能超過0.6%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐中,底面,是邊長為2的等邊三角形,且,,點是棱上的動點.
(I)求證:平面平面;
(Ⅱ)當(dāng)線段最小時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的零點及單調(diào)區(qū)間;
(2)求證:曲線存在斜率為8的切線,且切點的縱坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,,給出以下四個命題:①為偶函數(shù);②為偶函數(shù);③的最小值為0;④有兩個零點.其中真命題的是( ).
A.②④B.①③C.①③④D.①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com