數(shù)列{an}中,a1=8,a4=2,且滿足an+2-2an+1+an=0
(1)求數(shù)列的通項公式;
(2)設Sn=|a1|+|a2|+…+|an|,求Sn

解:(1)an+2-2an+1+an=0∴an+2-an+1=an+1-an
∴{an+1-an}為常數(shù)列,
∴{an}是以a1為首項的等差數(shù)列,
設an=a1+(n-1)d,a4=a1+3d,
,
∴an=10-2n.
(2)∵an=10-2n,令an=0,得n=5.
當n>5時,an<0;當n=5時,an=0;當n<5時,an>0.
∴當n>5時,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=T5-(Tn-T5)=2T5-Tn,Tn=a1+a2+…+an
當n≤5時,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn

分析:(1)首先判斷數(shù)列{an}為等差數(shù)列,由a1=8,a4=2求出公差,代入通項公式即得.
(2)首先判斷哪幾項為非負數(shù),哪些是負數(shù),從而得出當n>5時,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)求出結(jié)果;當n≤5時,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an當,再利用等差數(shù)列的前n項和公式求出答案.
點評:考查了等差數(shù)列的通項公式和前n項和公式,求出公差,用代入法直接可求;(2)問的關鍵是斷哪幾項為非負數(shù),哪些是負數(shù),屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=1,an=
12
an-1+1(n≥2),求通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,則
lim
n→∞
(a1+a2+…+an)等于( 。
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=-60,an+1-an=3,(1)求數(shù)列{an}的通項公式an和前n項和Sn(2)問數(shù)列{an}的前幾項和最小?為什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=1,對?n∈N*,an+2an+3•2n,an+1≥2an+1,則a2=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•長寧區(qū)一模)如果一個數(shù)列{an}對任意正整數(shù)n滿足an+an+1=h(其中h為常數(shù)),則稱數(shù)列{an}為等和數(shù)列,h是公和,Sn是其前n項和.已知等和數(shù)列{an}中,a1=1,h=-3,則S2008=
-3012
-3012

查看答案和解析>>

同步練習冊答案