已知函數(shù)f(x)=x2+2ax+1-a,( a∈R)
(1)若函數(shù)f(x)在(-∞,+∞)上至少有一個零點,求a的取值范圍;
(2)若函數(shù)f(x)在[0,1]上的最小值為-2,求a的值.
考點:函數(shù)零點的判定定理,二次函數(shù)的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)函數(shù)y=f(x)在R上至少有一個零點可化為方程x2+2ax+1-a=0至少有一個實數(shù)根,從而求得;
(2)函數(shù)f(x)=x2+2ax+1-a,對稱軸方程為x=-a;從而討論對稱軸以確定函數(shù)的單調(diào)性,從而求函數(shù)f(x)在[0,1]上的最小值,從而解得.
解答: 解:(1)因為函數(shù)y=f(x)在R上至少有一個零點,
所以方程x2+2ax+1-a=0至少有一個實數(shù)根,
所以△=2a×2a-4(1-a)≥0,
得a<
-1-
5
2
或a>
-1+
5
2
;
(2)函數(shù)f(x)=x2+2ax+1-a,對稱軸方程為x=-a.
①當-a<0,即a>0時,f(x)min=f(0)=1-a,
∴1-a=-2,∴a=3;
②當0≤-a≤1,即-1≤a≤0時,
f(x)min=f(-a)=-a2-a+1,
∴-a2-a+1=-2,
∴a=
-1±
13
2
(舍);
③當-a>1,即a<-1時,
f(x)min=f(1)=2+a,
∴2+a=-2,∴a=-4;
綜上可知,a=-4或a=3.
點評:本題考查了二次函數(shù)與二次方程的關(guān)系應(yīng)用及分類討論的數(shù)學思想應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線m和平面α,β,則下列四個命題中正確的是(  )
A、若α⊥β,m?β,則m⊥α
B、若α∥β,m∥α,則m∥β
C、若m∥α,m∥β,則α∥β
D、若α∥β,m⊥α,則m⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱柱ABC-A1B1C1的側(cè)棱與底面ABC垂直,且AA1=4,AC=BC=2,∠ACB=90°.
(1)證明:AC⊥平面BCC1B1
(2)求直線BB1與平面AB1C所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB=5cm,BC⊥AB,BD⊥AB,在BC,BD所在的平面α內(nèi)任取一點E,BE=7cm.
(1)EB和AB,CD和AB成多少度角?
(2)AE的長是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=sin(x+
φ
2
)cos(x+
φ
2
)(φ>0)的圖象沿x軸向右平移
π
8
個單位后,得到一個偶函數(shù)的圖象.
(1)則φ的最小值是
 
;
(2)過Q(
π
8
,0)的直線l與函數(shù)f(x)的兩個交點 M、N的橫坐標滿足0<xM
π
8
,
π
8
<xN
π
4
,則
ON
OQ
-
MO
OQ
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+
3
8
x2-2x+2在[et,+∞)(t∈Z)上有零點,則t的最大值為( 。
A、0B、-1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲,乙兩人進行五局三勝的象棋比賽,若甲每盤的取勝率為
3
5
,乙每盤的取勝率為
2
5
(和棋不算),求:
(1)比賽以甲比乙為3:0勝出的概率;
(2)比賽以甲比乙為3:2勝出的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)唯一的一個零點同時在(0,8),(4,8),(6,8)內(nèi),則下列結(jié)論正確的是( 。
A、函數(shù)f(x)在區(qū)間(7,8)內(nèi)有零點
B、函數(shù)f(x)在區(qū)間(6,7)或(7,8)內(nèi)有零點
C、函數(shù)f(x)在區(qū)間(0,7)內(nèi)無零點
D、函數(shù)f(x)在區(qū)間(0,6]上無零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=(-1)n,a100=
 

查看答案和解析>>

同步練習冊答案