如圖①,已知ABC是邊長(zhǎng)為l的等邊三角形,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將ABF沿AF折起,得到如圖②所示的三棱錐A-BCF,其中BC=

(1)證明:DE//平面BCF;
(2)證明:CF平面ABF;
(3)當(dāng)AD=時(shí),求三棱錐F-DEG的體積

(1)詳見(jiàn)解析,(2)詳見(jiàn)解析,(3)

解析試題分析:(1)證明線面平行,關(guān)鍵找出線線平行.由折疊前后不變關(guān)系,可推出線線平行. 折疊前,,在折疊后的三棱錐中 也成立,  ,因此可由線面平行判定定理得證DE//平面BCF.(2)證明線面垂直,關(guān)鍵找出線線垂直. 在等邊三角形中,的中點(diǎn),所以, 折疊后就是在三角形BCF中,,  ,由線面垂直判定定理可證:CF平面ABF .(3)求三棱錐的體積關(guān)鍵在于確定其高. 由(1)可知,結(jié)合(2)可得.所以根據(jù)錐的體積公式就可得到:.
試題解析:(1)在等邊三角形中,             1
在折疊后的三棱錐中 也成立,             2
平面, 平面,平面           4
(2)在等邊三角形中,的中點(diǎn),所以,    5
 在三棱錐中,,    7
                     9
(Ⅲ)由(1)可知,結(jié)合(2)可得
    13
考點(diǎn):線面平行判定定理,線面垂直判定定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,⊥底面,底面為菱形,點(diǎn)為側(cè)棱上一點(diǎn).
(1)若,求證:平面; 
(2)若,求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱中,平面,.以為鄰邊作平行
四邊形,連接
(1)求證:平面
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的多面體中,四邊形為正方形,四邊形是直角梯形,,平面

(1)求證:平面;
(2)求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面為一直角梯形,側(cè)面PAD是等邊三角形,其中,平面底面,的中點(diǎn).
 
(1)求證://平面
(2)求證:;
(3)求與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F(xiàn)分別是PC,BD的中點(diǎn)。

(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱中,側(cè)面為菱形,且,的中點(diǎn).

(1)求證:平面平面
(2)求證:∥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,四棱錐PABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD=2,E,F,H分別是線段PA,PD,AB的中點(diǎn).

(1)求證:PB∥平面EFH;
(2)求證:PD⊥平面AHF.

查看答案和解析>>

同步練習(xí)冊(cè)答案