18.(理)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,EF=CE,AB=$\sqrt{2}$EF.
(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大。

分析 (Ⅰ)設(shè)AC與BD交于點(diǎn)G,則在平面BDE中,可以先證明四邊形AGEF為平行四邊形,得到EG∥AF,就可證:AF∥平面BDE;
(Ⅱ)連接FG,可得平行四邊形CEFG為菱形,求出CF⊥EG,又四邊形ABCD為正方形,可得BD⊥AC,進(jìn)一步求出BD⊥平面ACEF,就可以得到CF⊥平面BDE;
(Ⅲ)如圖建立空間直角坐標(biāo)系,由(II)知,$\overrightarrow{CF}$是平面BDE的一個(gè)法向量,再利用平面ABE的法向量n•$\overrightarrow{BA}$=0,n$•\overrightarrow{BE}$=0,求出平面ABE的法向量$\overrightarrow{n}$,就可以求出二面角A-BE-D的大。

解答 (Ⅰ)證明:設(shè)AC于BD交于點(diǎn)G,
∵EF∥AG,且EF=1,AG=$\frac{1}{2}$AC=1,
∴四邊形AGEF為平行四邊形,
∴AF∥EG.
∵EG?面BDE,AF?平面BDE,
∴AF∥平面BDE;
(Ⅱ)證明:連接FG,∵EF∥CG,EF=CG=CE,∴平行四邊形CEFG為菱形,∴CF⊥EG.
∵四邊形ABCD為正方形,∴BD⊥AC.
又∵平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,
∴BD⊥平面ACEF.
∴CF⊥BD.又BD∩EG=G,
∴CF⊥平面BDE;
(III)解:令EF=CE=1,則AB=$\sqrt{2}$.如圖建立空間直角坐標(biāo)系.
由(II)知,$\overrightarrow{CF}$=($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,1)是平面BDE的一個(gè)法向量.
 設(shè)平面ABE的法向量$\overrightarrow{n}$=(x,y,z),則n•$\overrightarrow{BA}$=0,n$•\overrightarrow{BE}$=0.
即$\left\{\begin{array}{l}{(x,y,z)•(\sqrt{2},0.0)}\\{(x,y,z)•(0.-\sqrt{2},0)}\end{array}\right.$,
∴x=0,且z=$\sqrt{2}$y.令y=1,則z=$\sqrt{2}$.
∴n=(0,1,$\sqrt{2}$).
從而cos(n,$\overrightarrow{CF}$)=$\frac{n•\overrightarrow{CF}}{|n||\overrightarrow{CF}|}$=$\frac{\sqrt{3}}{2}$.
∵二面角A-BE-D為銳角,
∴二面角A-BE-D的大小為$\frac{π}{6}$.

點(diǎn)評(píng) 本題考查直線和平面垂直的判定和性質(zhì)和線面平行的推導(dǎo)以及二面角的求法,在證明線面平行時(shí),其常用方法是在平面內(nèi)找已知直線平行的直線,當(dāng)然也可以用面面平行來(lái)推導(dǎo)線面平行,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1=81,a5=16,則它的前5項(xiàng)和S5=211.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在平面直角坐標(biāo)系xOy中,設(shè)直線y=-x+2與圓x2+y2=r2(r>0)交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若圓上一點(diǎn)C滿足$\overrightarrow{OC}$=$\frac{5}{4}$$\overrightarrow{OA}$+$\frac{3}{4}$$\overrightarrow{OB}$,則r=( 。
A.2$\sqrt{2}$B.5C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知△ABC中內(nèi)角A為鈍角,則復(fù)數(shù)(sinA-sinB)+i(sinB-cosC)對(duì)應(yīng)點(diǎn)在( 。
A.第Ⅰ象限B.第Ⅱ象限C.第Ⅲ象限D.第Ⅳ象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.變量x,y滿足條件$\left\{\begin{array}{l}{x+y≤6}\\{3y-x≥2}\\{x≥1}\end{array}\right.$則2x+3y的最小值為     5     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.?dāng)?shù)列{an}的通項(xiàng)公式為an=3n-23,當(dāng)Sn取到最小時(shí),n=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若f(x)=-$\frac{1}{2}$x2+mlnx在(1,+∞)是減函數(shù),則m的取值范圍是( 。
A.[1,+∞)B.(1,+∞)C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.△ABC的頂點(diǎn)A(2,3),B(-4,-2)和重心G(2,-1),則C點(diǎn)坐標(biāo)為(8,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知(2x2-x+1)(1-2x)6=a0+a1x+a2x2+…+a8x8
(1)求a2;
(2)求(a2+a4+a6+a82-(a1+a3+a5+a72

查看答案和解析>>

同步練習(xí)冊(cè)答案