【題目】已知函數(shù).

1)指出函數(shù)的基本性質:定義域,奇偶性,單調性,值域(結論不需證明),并作出函數(shù)的圖象;

2)若關于的不等式恒成立,求實數(shù)的取值范圍;

3)若關于的方程恰有個不同的實數(shù)解,求實數(shù)的取值范圍.

【答案】1)定義域:,是偶函數(shù),在區(qū)間上單調遞增,在區(qū)間上單調遞減,值域為,作圖見解析;(2;(3.

【解析】

1)將函數(shù)表示為分段函數(shù),利用基本初等函數(shù)的基本性質可得出函數(shù)的定義域、奇偶性、單調性和值域,并結合解析式作出該函數(shù)的圖象;

2)令,可得出不等式恒成立,然后利用參變量分離法得出,求出函數(shù)的最大值,即可得出實數(shù)的取值范圍;

3)令,結合題意可得知關于的方程的兩根,然后利用二次函數(shù)的零點分布列出關于的不等式組,即可求出實數(shù)的取值范圍.

1,函數(shù)是偶函數(shù),

在區(qū)間上單調遞增,在區(qū)間上單調遞減,

函數(shù)的最大值是,無最小值,值域為.

作圖如下:

2)因為關于的不等式恒成立,

,則,即不等式恒成立.

時,因為,所以.

,所以

3)關于的方程恰有個不同的實數(shù)解即個不同的解,如下圖所示:

時,方程有四個根;當時,方程有兩個根;

時, 方程無解.

設方程的兩根分別為,則,.

,則.

因此,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)zbi(bR)是純虛數(shù),i是虛數(shù)單位.

(1)求復數(shù)z

(2)若復數(shù)(mz)2所表示的點在第二象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角,,的對邊分別是,且.

1)求角的大。

2)已知等差數(shù)列的公差不為零,若,且,,成等比數(shù)列,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是正四面體的平面展開圖,分別是的中點,在這個正四面體中:①平行;②為異面直線;③成60°角;④垂直.以上四個命題中,正確命題的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,海中一小島C周圍nmile內(nèi)有暗礁,貨輪由西向東航行至A處測得小島C位于北偏東75°方向上,航行8nmile后,于B處測得小島C在北偏東60°方向上.

1)如果這艘貨輪不改變航向繼續(xù)前進,有沒有觸礁的危險?請說明理由.

2)如果有觸礁的危險,這艘貨輪在B處改變航向為南偏東α°α>0)方向航行,順利繞過暗礁,求a的最大值.(附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=xex

1)求函數(shù)fx)的極值.

2)若fx)﹣lnxmx1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2α4cosα=0.已知直線l的參數(shù)方程為為參數(shù)),點M的直角坐標為.

1)求直線l和曲線C的普通方程;

2)設直線l與曲線C交于A,B兩點,求.

查看答案和解析>>

同步練習冊答案