【題目】在對應(yīng)的邊分別為,且,
(I)求角A,
(II)求證:
(III)若,且BC邊上的中線AM長為,求的面積。
【答案】(Ⅰ);(Ⅱ)詳見解析;(Ⅲ).
【解析】
試題(1)已知等式利用正弦定理化簡,利用兩角和與差的正弦函數(shù)公式及二倍角的正弦函數(shù)公式化簡,再利用誘導(dǎo)公式化簡求出sinA的值,即可確定出A的度數(shù);
(2)表示出所證不等式左右兩邊之差,利用余弦定理及完全平方公式性質(zhì)化簡,判斷差的正負(fù)即可得證;
(3)由a=b,得到A=B,求出C的度數(shù),在三角形AMC中,由AM的長與cosC的值,求出AC的長,利用三角形面積公式求出三角形ABC面積即可.
試題解析:
(1),,
即
.
又,,
(2)
則
.
(3)由及(1),知
.
在中,由余弦定理
得,解得.
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓以原點(diǎn)為圓心,且圓與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)若直線:與圓交于、兩點(diǎn),分別過、兩點(diǎn)作直線的垂線,交軸于、兩點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知長方形ABCD,AD=2CD=4,M、N分別為AD、BC的中點(diǎn),將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD.
(1)求證:直線CM⊥面DFN;
(2)求點(diǎn)C到平面FDM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋時期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即,其中a、b、c分別為內(nèi)角A、B、C的對邊.若,,則面積S的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶一中為了增強(qiáng)學(xué)生的記憶力和辨識力,組織了一場類似《最強(qiáng)大腦》的賽,兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手,除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時隊(duì)的得分高于隊(duì)的得分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點(diǎn)P.
(1)若直線l平行于直線l1:4x-y+1=0,求l的方程;
(2)若直線l垂直于直線l1:4x-y+1=0,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)是直線上的動點(diǎn),定點(diǎn) 點(diǎn)為的中點(diǎn),動點(diǎn)滿足.
(1)求點(diǎn)的軌跡的方程
(2)過點(diǎn)的直線交軌跡于兩點(diǎn),為上任意一點(diǎn),直線交于兩點(diǎn),以為直徑的圓是否過軸上的定點(diǎn)? 若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,點(diǎn)是與的交點(diǎn),點(diǎn)在線段上,且.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com