已知數(shù)列{an}為等差數(shù)列,a1+a9=10.求a2+a3+a4+a5+a6+a7+a8的值(  )
分析:利用等差數(shù)列的性質(zhì)可得,a1+a9=a2+a8=a3+a7=a4+a6=2a5,代入所求式子即可求解
解答:解;由等差數(shù)列的性質(zhì)可知,a1+a9=a2+a8=a3+a7=a4+a6=2a5
∴a2+a3+a4+a5+a6+a7+a8=
7(a1+a9)
2
=
7×10
2
=35

故選A
點(diǎn)評(píng):本題主要考查了等差數(shù)列的性質(zhì):若m+n=p+q,則am+an=ap+aq的應(yīng)用,靈活應(yīng)用該性質(zhì)可以簡(jiǎn)化基本運(yùn)算
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2013等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0,且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2011等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出“等和數(shù)列”的定義:從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)的和都等于一個(gè)常數(shù),這樣的數(shù)列叫做“等和數(shù)列”,這個(gè)常數(shù)叫做“公和”.已知數(shù)列{an}為等和數(shù)列,公和為
1
2
,且a2=1,則a2009=( 。
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012--2013學(xué)年河南省高二上學(xué)期第一次考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.定義:在數(shù)列{an}中,an>0且an≠1,若為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案