已知直三棱柱ABCA1B1C1,AB=AC,F為棱BB1上一點,BFFB1=2∶1 ,BF=BC=2a.

(1)若DBC的中點,E為線段AD上不同于A、D的任意一點.證明EFFC1.

(2)試問:若AB=2a,在線段AD上的E點能否使EF與平面BB1C1C成60°角,為什么?證明你的結(jié)論.

(1)證明:連結(jié)OF,容易證明AD⊥面BB1C1C,DFEF在面B1C1CB的射影,且DFFC1,∴FC1EF.

(2)解析:∵AD⊥面BB1C1C,∠DEFEF與面BB1C1C所成的角,?

在△EDF中,若∠EFD=60°,則ED=DF·tan60°=·a =a.?

AB=BC=AC=2a,∴AD=a.?

aa,∴EDA的延長線上,而不在線段AD上.?

故線段AD上的E點不可能使EF與平面BB1C1C成60°角.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點.
(Ⅰ)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直三棱柱ABC-A1B1C1的所有棱長都相等,且D,E,F(xiàn)分別為BC,BB1,AA1的中點.
(I) 求證:平面B1FC∥平面EAD;
(II)求證:BC1⊥平面EAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′兩兩垂直,E,F(xiàn),H分別是AC,AB,BC的中點,
(I)證明:EF⊥AH;    
(II)求四面體E-FAH的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點.
(Ⅰ)求異面直線AB和C1D所成的角(用反三角函數(shù)表示);
(Ⅱ)若E為AB上一點,試確定點E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的條件下,求點D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分別是棱BC.CC1.B1C1的中點.A1Q=3QA, BC=
2
AA1

(Ⅰ)求證:PQ∥平面ANB1
(Ⅱ)求證:平面AMN⊥平面AMB1

查看答案和解析>>

同步練習冊答案