【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問題時,發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…,該數(shù)列的特點是:前兩個數(shù)均為1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列稱為斐波那契數(shù)列. 并將數(shù)列中的各項除以4所得余數(shù)按原順序構(gòu)成的數(shù)列記為,則下列結(jié)論正確的是( )
A.B.
C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動場所,配備了各種文化娛樂活動所需要的設(shè)施,讓廣大居民健康生活、積極向上.社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計數(shù)據(jù)如表:(為了便于計算,把2015年簡記為5,其余以此類推)
年份(年) | 5 | 6 | 7 | 8 |
投資金額(萬元) | 15 | 17 | 21 | 27 |
(1)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程;
(2)預(yù)測該社區(qū)在2019年在“文化丹青”上的投資金額.
(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為, .)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.互相垂直的兩條直線的直觀圖仍然是互相垂直的兩條直線
B.梯形的直觀圖可能是平行四邊形
C.矩形的直觀圖可能是梯形
D.正方形的直觀圖可能是平行四邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)某研究小組在電腦上進(jìn)行人工降雨模擬實驗,準(zhǔn)備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗數(shù)據(jù)統(tǒng)計如下:
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗總次數(shù) |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實驗的統(tǒng)計數(shù)據(jù):
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只要是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個數(shù)”為隨機變量ξ,求隨機變量ξ的分布列和均值E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國漢字聽寫大會》的活動.為響應(yīng)學(xué)校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當(dāng)作概率).
(1)求甲、乙兩人成績的平均數(shù)和中位數(shù);
(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓:相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究單冊書籍的成本(單位:元)與印刷冊數(shù)(單位:千冊)之間的關(guān)系,在印制某種書籍時進(jìn)行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .
(1)為了評價兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計算結(jié)果精確到0.1);
②分別計算模型甲與模型乙的殘差平方和及,并通過比較的大小,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場調(diào)查,新需求量為10千冊,若印刷廠以每冊5元的價格將書籍出售給訂貨商,求印刷廠二次印刷10千冊獲得的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com