已知點是離心率為的橢圓C:上的一點.斜率為的直線BD交橢圓C于B、D兩點,且A、B、D三點不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)△ABD的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?
(Ⅲ)求證:直線AB、AD的斜率之和為定值.
【答案】分析:(Ⅰ)由,,能導出橢圓C的方程.
(Ⅱ)設(shè)直線BD的方程為,,△=-8b2+64>0,設(shè)d為點A到直線BD:的距離,由,故,由此知當b=±2時,△ABD的面積最大,最大值為
(Ⅲ)設(shè)D(x1,y1),B(x2,y2),直線AB、AD的斜率分別為:kAB、kAD,則kAD+kAB==,由此能導出即kAD+kAB=0.
解答:解:(Ⅰ)∵,,a2=b2+c2
∴a=2,,(5分)
(Ⅱ)設(shè)直線BD的方程為∴△=-8b2+64>0,①②∵
設(shè)d為點A到直線BD:的距離,∴,
當且僅當b=±2時取等號.
因為±2,所以當b=±2時,△ABD的面積最大,最大值為(10分)
(Ⅲ)設(shè)D(x1,y1),B(x2,y2),
直線AB、AD的斜率分別為:kAB、kAD,
則kAD+kAB==*
將(Ⅱ)中①、②式代入*式整理得=0,
即kAD+kAB=0(14分)
點評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識,解題時要注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率e=
3
2
,S△DEF2=1-
3
2
.若點M(x0,y0)在橢圓C上,則點N(
x0
a
,
y0
b
)稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的標準方程;
(2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間(0,k)中的實數(shù)m對應(yīng)線段AB上的點M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數(shù)m對應(yīng)的實數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(
k
2
,0)
對稱;⑤函數(shù)f(m)=3
3
時AM過橢圓的右焦點.其中所有的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)

  如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的

  左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢

  圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點

  分別 為

   (Ⅰ)求橢圓和雙曲線的標準方程; 

   (Ⅱ)設(shè)直線、的斜率分別為,證明

   (Ⅲ)是否存在常數(shù),使得恒成立?

      若存在,求的值;若不存在,請說明理由.

                                                             

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖南省懷化市高三第二次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題

下圖展示了一個由區(qū)間(其中為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間中的實數(shù)對應(yīng)線段上的點,如圖1;將線段圍成一個離心率為的橢圓,使兩端點、恰好重合于橢圓的一個短軸端點,如圖2 ;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在軸上,已知此時點的坐標為,如圖3,在圖形變化過程中,圖1中線段的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線與直線交于點,則與實數(shù)對應(yīng)的實數(shù)就是,記作,

現(xiàn)給出下列5個命題

;   ②函數(shù)是奇函數(shù);③函數(shù)上單調(diào)遞增;   ④.函數(shù)的圖象關(guān)于點對稱;⑤函數(shù)時AM過橢圓的右焦點.其中所有的真命題是:    (   )

A.①③⑤          B.②③④                       C.②③⑤             D.③④⑤

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013年湖南省懷化市高考數(shù)學二模試卷(理科)(解析版) 題型:選擇題

如圖展示了一個由區(qū)間(0,k)(其中k為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間(0,k)中的實數(shù)m對應(yīng)線段AB上的點M,如圖1;將線段AB圍成一個離心率為的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數(shù)m對應(yīng)的實數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點對稱;⑤函數(shù)時AM過橢圓的右焦點.其中所有的真命題是( )
A.①③⑤
B.②③④
C.②③⑤
D.③④⑤

查看答案和解析>>

同步練習冊答案