在極坐標(biāo)系中,圓ρ=4被直線分成兩部分的面積之比是   
【答案】分析:利用圓ρ=4和直線θ=在極坐標(biāo)系中特殊位置可知,圓是以極點為圓心,4為半徑的圓,直線是過極點且傾斜角為的直線,再利用圓的對稱性質(zhì)求解即可.
解答:解:∵直線θ=的過圓ρ=4的圓心,
∴直線把圓分成兩部分的面積之比是1:1.
故答案為1:1.
點評:本題主要考查了簡單曲線的極坐標(biāo)方程,圓的性質(zhì)等,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)在極坐標(biāo)系中,圓ρ=4sinθ的圓心到直線θ=
π
6
(ρ∈R)的距離是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓ρ=-4cosθ的圓心極坐標(biāo)為
(2,π)
(2,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湛江模擬)(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=4
3
cosθ
的圓心到直線θ=
π
3
(ρ∈R)
的距離是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,圓ρ=2cosθ的圓心C到直線ρcosθ=4的距離是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)在極坐標(biāo)系中,圓C1的方程為ρ=4
2
cos(θ-
π
4
)
,以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C2的參數(shù)方程
x=-1-acosθ
y=-1+asinθ
(θ是參數(shù)),若圓C1與圓C2相切,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案