設(shè)平面向量a=(cosx,sinx),b=(cosx+2,sinx),xR.

(1)x(0,),證明:ab不平行;

(2)c=(0,1),求函數(shù)f(x)=a·(b-2c)的最大值,并求出相應(yīng)的x.

 

【答案】

(1)見解析 (2) f(x)max=5,x=2kπ-(kZ)

【解析】

(1)證明:假設(shè)ab平行,

cosxsinx-sinx(cosx+2)=0,

sinx=0,x(0,),sinx>0,矛盾.

ab不平行.

(2):f(x)=a·b-2a·c

=cos2x+2cosx+sin2x-2sinx

=1-2sinx+2cosx

=1-4sinx-.

所以f(x)max=5,x=2kπ-(kZ).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
a
=(cosx,sinx)
,
b
=(
3
2
,
1
2
)
,函數(shù)f(x)=
a
b
+1

①求函數(shù)f(x)的值域;
②求函數(shù)f(x)的單調(diào)增區(qū)間.
③當(dāng)f(α)=
9
5
,且
π
6
<α<
3
時,求sin(2α+
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
a
=(cosx,sinx),
b
=(cosx+2
3
,sinx)
,
c
=(sinα,cosα)
,x∈R,
(Ⅰ)若
a
c
,求cos(2x+2α)的值;
(Ⅱ)若x∈(0,
π
2
)
,證明
a
b
不可能平行;
(Ⅲ)若α=0,求函數(shù)f(x)=
a
•(
b
-2
c
)
的最大值,并求出相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
a
=(cosx,sinx),
b
=(
3
2
,
1
2
),函數(shù)f(x)=
a
b
+1.
(Ⅰ)求函數(shù)f(x)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)f(a)=
9
5
,且
π
6
<a<
3
時,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)平面向量
a
=(cosx,sinx)
,
b
=(
3
2
1
2
)
,函數(shù)f(x)=
a
b
+1

①求函數(shù)f(x)的值域;
②求函數(shù)f(x)的單調(diào)增區(qū)間.
③當(dāng)f(α)=
9
5
,且
π
6
<α<
3
時,求sin(2α+
3
)
的值.

查看答案和解析>>

同步練習(xí)冊答案