7.已知△ABC的面積為1,且AB=1,A=$\frac{3π}{4}$,則BC長(zhǎng)為$\sqrt{13}$.

分析 利用三角形面積公式列出關(guān)系式,將c,sinA及已知面積代入求出b的值,再利用余弦定理列出關(guān)系式,把b,c,cosA的值代入計(jì)算即可求出a的值.

解答 解:∵AB=c=1,A=$\frac{3π}{4}$,△ABC的面積為1,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{2}}{4}$b=1,
即b=2$\sqrt{2}$,
由余弦定理得:a2=b2+c2-2bccosA=8+1+4=13,
則BC=a=$\sqrt{13}$.
故答案為:$\sqrt{13}$.

點(diǎn)評(píng) 此題考查了余弦定理,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.(ax+$\sqrt{x}}$)3的展開(kāi)式中x3項(xiàng)的系數(shù)為20,則實(shí)數(shù)a=$\root{3}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.?dāng)?shù)列{an}滿足a1=2016,a2=1,an+1=an+an+2,則前2017項(xiàng)和S2017=( 。
A.2016B.1C.0D.-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若圓x2+y2=m的半徑為$\sqrt{2}$,則m為( 。
A.0或2B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)是奇函數(shù)的是( 。
A.y=xsin2xB.y=xcos2xC.y=x+cosxD.y=x-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某樣本數(shù)據(jù)的莖葉圖如圖所示,若該組數(shù)據(jù)的中位數(shù)為85,平均數(shù)為85.5,則x+y=(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,且公比為2,則S4=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.半徑為6的圓與x軸相切,且與圓x2+y2-6y+8=0內(nèi)切,則此圓的方程是( 。
A.(x-4)2+(y-6)2=6B.(x±4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x±4)2+(y-6)2=36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=eax-ax+e2-4,x∈[-2,2](a≠0,e為自然對(duì)數(shù)的底數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)的最大值;
(3)如果對(duì)于一切x1、x2、x3∈(-2,2),總存在以f(x1)、f(x2)、f(x3)為三邊長(zhǎng)的三角形,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案