如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F(xiàn)分別是PC,BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD.
考點(diǎn):平面與平面垂直的判定,直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:(1)利用三角形中位線的性質(zhì),可得線線平行,證明EFGH為平行四邊形,可得EF∥GH,進(jìn)而可得線面平行;
(2)先證明線面垂直,再證明面面垂直即可.
解答: 證明:(1)設(shè)PD中點(diǎn)為H,AD中點(diǎn)為G,連結(jié)FG,GH,HE,
∵G為AD中點(diǎn),F(xiàn)為BD中點(diǎn),
∴GF∥AB且EF=
1
2
AB

同理EH∥CD且EF=
1
2
CD
,
∵ABCD為矩形,∴AB∥CD,AB=CD,
∴GF∥EH,GF=EH,
∴EFGH為平行四邊形,∴EF∥GH,
又∵GH?面PAD,EF?面PAD,∴EF∥面PAD.
(2)∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,
又∵ABCD為矩形,∴CD⊥AD,
∴CD⊥面PAD
又∵CD?面PCD,∴面PAD⊥面PCD.
點(diǎn)評(píng):本題考查線面平行、面面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線l1:y=kx+1與l2:x-y-1=0的交點(diǎn)在第一象限內(nèi),則k的取值范圍是(  )
A、k>1
B、-1<k<1
C、k<-1或k>1
D、k<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,D是直角△ABC斜邊BC上一點(diǎn),若AB=AD,AC=
3
DC,則sin∠ABD=( 。
A、
1
2
B、
2
2
C、
3
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a14=
1
a
,a114=
1
b
,a2014=
1
c
,則ab+19bc-20ac=(  )
A、0B、14
C、114D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)O(0,0)、A(1,1)及直線l:x+y=a,它們滿足:O、A有一點(diǎn)在直線l上或O、A在直線l的兩側(cè).設(shè)h(a)=a2+2a+3,則使不等式x2+4x-2≤h(a)恒成立的x的取值范圍是( 。
A、[0,2]
B、[-5,1]
C、[3,11]
D、[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F(xiàn)為棱BB1的中點(diǎn),M為線段AC1的中點(diǎn).
(1)求證:FM∥平面ABCD;
(2)求證:平面AFC1⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次考試中,從甲、乙兩個(gè)班各隨機(jī)抽取10名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,學(xué)生成績(jī)的莖葉圖如圖所示,成績(jī)不小于90分為及格.
(Ⅰ)從每班抽取的學(xué)生中各隨機(jī)抽取一人,求至少有一人及格的概率
(Ⅱ)從甲班10人中隨機(jī)抽取一人,乙班10人中隨機(jī)抽取兩人,三人中及格人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的不等式x2+(a-1)x+1≤0的解集為空集,命題q:方程(a-1)x2+(3-a)y2=(a-1)(3-a)表示焦點(diǎn)在y軸上的橢圓,若命題¬q為真命題,p∨q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P為函數(shù)f(x)=
1
2
x2+2ax與g(x)=3a2lnx+2b(a>0)圖象的公共點(diǎn),以P為切點(diǎn)可作直線l與兩曲線都相切,則實(shí)數(shù)b的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案