已知公差大于零的等差數(shù)列,前項和為. 且滿足.
(Ⅰ)求數(shù)列的通項公式;

(1)
(2) 當且僅當時,取得最大值.

解析試題分析:解: (Ⅰ)因為是等差數(shù)列,所以
所以是方程的兩根.又,所以.
,,.     
(Ⅱ),則
.
當且僅當時,取得最大值.  
考點:等差數(shù)列,數(shù)列的求和
點評:解決的關鍵是根據等差數(shù)列的性質來得到求解通項公式,以及結合求和公式得到函數(shù)解析式得到最值,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列中,,是不為零的常數(shù),),且成等比數(shù)列. 
(1)求的值;
(2)求的通項公式;  (3)若數(shù)列的前n項之和為,求證。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知公差不為零的等差數(shù)列中,,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知公差不為零的等差數(shù)列的前項和,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,求的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是首項為19,公差為-2的等差數(shù)列,的前n項和。
(Ⅰ)求通項;
(Ⅱ)設是首項為1,公比為3的等比數(shù)列,求數(shù)列的通項公式及其前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且滿足:;數(shù)列滿足 
(1)求
(2)記數(shù)列,若的前項和為,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設等差數(shù)列的首項為1,其前n項和為,是公比為正整數(shù)的等比數(shù)列,其首項為3,前n項和為. 若.
(1)求的通項公式;(7分)
(2)求數(shù)列的前n項和.(5分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共13分)
數(shù)列{}中,,,且滿足
(1)求數(shù)列的通項公式;
(2)設,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知數(shù)列的前n項和為,且,(=1,2,3…)
(1)求數(shù)列的通項公式;
(2)記,求

查看答案和解析>>

同步練習冊答案