【題目】設函數(shù),是函數(shù)的導數(shù).
(1)若,證明在區(qū)間上沒有零點;
(2)在上恒成立,求的取值范圍.
【答案】(1)證明見解析(2)
【解析】
(1)先利用導數(shù)的四則運算法則和導數(shù)公式求出,再由函數(shù)的導數(shù)可知,
函數(shù)在上單調遞增,在上單調遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;
(2)由題意可將轉化為,構造函數(shù),
利用導數(shù)討論研究其在上的單調性,由,即可求出的取值范圍.
(1)若,則,,
設,則,,
,故函數(shù)是奇函數(shù).
當時,,,這時,
又函數(shù)是奇函數(shù),所以當時,.
綜上,當時,函數(shù)單調遞增;當時,函數(shù)單調遞減.
又,,
故在區(qū)間上恒成立,所以在區(qū)間上沒有零點.
(2),由,所以恒成立,
若,則,設,
.
故當時,,又,所以當時,,滿足題意;
當時,有,與條件矛盾,舍去;
當時,令,則,
又,故在區(qū)間上有無窮多個零點,
設最小的零點為,
則當時,,因此在上單調遞增.
,所以.
于是,當時,,得,與條件矛盾.
故的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+1+a(x≤e,e是自然對數(shù)的底)與g(x)=3lnx的圖象上存在關于x軸對稱的點,則實數(shù)a的取值范圍是( )
A.[0,e3﹣4]B.[0,2]
C.[2,e3﹣4]D.[e3﹣4,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,,,,是的中點,E是棱上一動點.
(1)若E是棱的中點,證明:平面;
(2)求二面角的余弦值;
(3)是否存在點E,使得,若存在,求出E的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣為了幫助農戶脫貧致富,鼓勵農戶利用荒地山坡種植果樹,某農戶考察了三種不同的果樹苗、、.經過引種實驗發(fā)現(xiàn),引種樹苗的自然成活率為,引種樹苗、的自然成活率均為.
(1)任取樹苗、、各一棵,估計自然成活的棵數(shù)為,求的分布列及其數(shù)學期望;
(2)將(1)中的數(shù)學期望取得最大值時的值作為種樹苗自然成活的概率.該農戶決定引種棵種樹苗,引種后沒有自然成活的樹苗有的樹苗可經過人工栽培技術處理,處理后成活的概率為,其余的樹苗不能成活.
①求一棵種樹苗最終成活的概率;
②若每棵樹苗引種最終成活可獲利元,不成活的每棵虧損元,該農戶為了獲利期望不低于萬元,問至少要引種種樹苗多少棵?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質量指數(shù)AQI是反映空氣質量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質量越好,其對應關系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢:
下列敘述錯誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占
C. 該市10月的前半個月的空氣質量越來越好
D. 總體來說,該市10月上旬的空氣質量比中旬的空氣質量好
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中, 平面, ,點分別為的中點,設直線與平面交于點.
(1)已知平面平面,求證: .
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率,點,點、分別為橢圓的上頂點和左焦點,且.
(1)求橢圓的方程;
(2)若過定點的直線與橢圓交于,兩點(在,之間)設直線的斜率,在軸上是否存在點,使得以,為鄰邊的平行四邊形為菱形?如果存在,求出的取值范圍?如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com