已知a、b∈R,設(shè)p:|a|+|b|>|a+b|,q:函數(shù)y=x2-x+1在(0,+∞)上是增函數(shù),那么命題:p∨q、p∧q、p中的真命題是________.

 

【答案】

p

【解析】主要考查簡(jiǎn)單的邏輯聯(lián)結(jié)詞的含義。

解:對(duì)于p,當(dāng)a>0,b>0時(shí),|a|+|b|=|a+b|,故p假,p為真;對(duì)于q,拋物線y=x2-x+1的對(duì)稱軸為x=,故q假,所以p∨q假,p∧q假.

這里p應(yīng)理解成|a|+|b|>|a+b|不恒成立,而不是|a|+|b|≤|a+b|.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
和雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共頂點(diǎn).P是雙曲線上的動(dòng)點(diǎn),M是橢圓上的動(dòng)點(diǎn)(P、M都異于A、B),且滿足
AP
+
BP
=λ(
AM
+
BM
)
,其中λ∈R,設(shè)直線AP、BP、AM、BM的斜率分別記為k1,k2,k3,k4,k1+k2=5,則k3+k4=
-5
-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)已知
a
、
b
是兩個(gè)不共線的非零向量.
(1)設(shè)
OA
=
a
,
OB
=t
b
(t∈R),
OC
=
1
3
(
a
+
b
)
,當(dāng)A、B、C三點(diǎn)共線時(shí),求t的值.
(2)如圖,若
a
=
OD
,
b
=
OE
,
a
b
夾角為120°,|
a
|=|
b
|=1,點(diǎn)P是以O(shè)為圓心的圓弧
DE
上一動(dòng)點(diǎn),設(shè)
OP
=x
OD
+y
OE
(x,y∈R),求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B分別是直線y=
3
3
x
y=-
3
3
x
上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
3
,P是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)Q(1,0)任意作直線l(與x軸不垂直),設(shè)l與(1)中軌跡C交于M、N,與y軸交于R點(diǎn).若
RM
MQ
,
RN
NQ
,證明:λ+μ 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知A、B為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
和雙曲線
x2
a2
-
y2
b2
=1
的公共頂點(diǎn),P、Q分別為雙曲線和橢圓上不同于A、B的動(dòng)點(diǎn),且
OP
OQ
(λ∈R,λ>1)
.設(shè)AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4
(1)求證:k1k2=
b2
a2

(2)求k1+k2+k3+k4的值;
(3)設(shè)F1、F2分別為雙曲線和橢圓的右焦點(diǎn),若PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案