【題目】已知橢圓:的右焦點為,且點在橢圓上.
⑴求橢圓的標準方程;
⑵已知動直線過點且與橢圓交于兩點.試問軸上是否存在定點,使得恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代名詞“芻童”原來是草堆的意思,古代用它作為長方體棱臺(上、下底面均為矩形額棱臺)的專用術(shù)語,關(guān)于“芻童”體積計算的描述,《九章算術(shù)》注曰:“倍上表,下表從之,亦倍小表,上表從之,各以其廣乘之,并,以高若深乘之,皆六面一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘;將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個數(shù)值相加,與高相乘,再取其六分之一,以此算法,現(xiàn)有上下底面為相似矩形的棱臺,相似比為,高為3,且上底面的周長為6,則該棱臺的體積的最大值是( )
A. 14 B. 56 C. D. 63
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),A,B是曲線上兩個不同的點.
(Ⅰ)求的單調(diào)區(qū)間,并寫出實數(shù)的取值范圍;
(Ⅱ)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),以橢圓內(nèi)一點為中點作弦,設(shè)線段的中垂線與橢圓相交于, 兩點.
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得, , , 在同一個圓上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , 分別為的中點,點在線段上.
(Ⅰ)求證: 平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知BD=2AD=8,AB=2DC=4.
(1)設(shè)M是PC上的一點,求證:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市理論預(yù)測2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬) | 5 | 7 | 8 | 11 | 19 |
(1)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2) 據(jù)此估計2015年該城市人口總數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個盒子中分別裝有標號為1,2,3,4的四個球,現(xiàn)從甲乙兩個盒子中各取出1個球,球的標號分別記做a,b,每個球被取出的可能性相等.
(1)求a+b能被3整除的概率;
(2)若|a-b|≤1則中獎,求中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與雙曲線有共同焦點,且離心率為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)為橢圓的下頂點, 為橢圓上異于的不同兩點,且直線與的斜率之積為.
(。┰噯所在直線是否過定點?若是,求出該定點;若不是,請說明理由;
(ⅱ)若為橢圓上異于的一點,且,求的面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com