給出50個(gè)數(shù),1,2,4,7,11,…,其規(guī)律是:第1個(gè)數(shù)是1,第2個(gè)數(shù)比第1個(gè)數(shù)大1,第3個(gè)數(shù)比第2個(gè)數(shù)大2,第4個(gè)數(shù)比第3個(gè)數(shù)大3,以此類推,要計(jì)算這50個(gè)數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請(qǐng)?jiān)趫D中判斷框中的①處和處理框中的②處填上合適的語句,使之能完成該題算法功能( 。
A、i≤50;p=p+i
B、i<50;p=p+i
C、i≤50;p=p+1
D、i<50;p=p+1
考點(diǎn):程序框圖
專題:計(jì)算題,算法和程序框圖
分析:由已知中程序的功能是給出50個(gè)數(shù):1,2,4,7,…其規(guī)律是:第1個(gè)數(shù)是1;第2個(gè)數(shù)比第1個(gè)數(shù)大1;第3個(gè)數(shù)比第2個(gè)數(shù)大2;第4個(gè)數(shù)比第3個(gè)數(shù)大3;…以此類推,要計(jì)算這50個(gè)數(shù)的和,我們可以根據(jù)循環(huán)次數(shù),循環(huán)變量的初值,步長計(jì)算出循環(huán)變量的終值,得到①中條件;再根據(jù)累加量的變化規(guī)則,得到②中累加通項(xiàng)的表達(dá)式.
解答: 解:由于要計(jì)算50個(gè)數(shù)的和,
故循環(huán)要執(zhí)行50次,由于循環(huán)變量的初值為1,步長為1,故終值應(yīng)為50
即①中應(yīng)填寫i≤50;
又由第1個(gè)數(shù)是1;
第2個(gè)數(shù)比第1個(gè)數(shù)大1;
第3個(gè)數(shù)比第2個(gè)數(shù)大2;
第4個(gè)數(shù)比第3個(gè)數(shù)大3;…
故②中應(yīng)填寫p=p+i
故選:A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是循環(huán)結(jié)構(gòu),其中在循環(huán)次數(shù)=(循環(huán)終值-初值)÷步長+1,是循環(huán)次數(shù),終值,初值,步長的知三求一問題,唯一公式,要求熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2-x的圖象與函數(shù)y=|lnx|的圖象的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為a和b,下列結(jié)論成立的是(  )
A、0<ab<1
B、ab=1
C、0<ab<e
D、ab≥e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的是( 。
A、已知f(x)=sin2x+
2
sin2x
,則f(x)的最小值是2
2
B、已知數(shù)列{an}的通項(xiàng)公式為an=n+
2
n
,則{an}的最小項(xiàng)為2
2
C、已知實(shí)數(shù)x,y滿足x+y=2,則xy的最大值是1
D、已知實(shí)數(shù)x,y滿足xy=1,則x+y的最小值是2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若凸k邊形的內(nèi)角和為f(k),則凸k+1邊形的內(nèi)角和f(k+1)(k≥3且k∈N*)等于(  )
A、f(k)+
π
2
B、f(k)+π
C、f(k)+
3
2
π
D、f(k)+2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,滿足a=1,A=30°,B=45°,則b=( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x,x≥0
-x
,x<0
,則“f(a)=4”是“a=2”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
1+i
=1-ni,其中m、n是實(shí)數(shù),i是虛數(shù)單位,則復(fù)數(shù)m+ni在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C:
x2
a2
-
y2
b2
=1的左頂點(diǎn)為A,右焦點(diǎn)為F,離心率e=2,焦距為4.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)M是雙曲線C上任意一點(diǎn),且M在第一象限內(nèi),直線MA與MF傾斜角分別為al,a2,求2a1+a2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=
Sn
+
Sn-1
(n≥2).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=
1
Sn
Sn+3
,記數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn
11
18

查看答案和解析>>

同步練習(xí)冊(cè)答案