分析 (Ⅰ)連接BC1,交B1C于點F,連接DF,證明DF∥AC1,即可證明AC1∥平面B1CD;
(Ⅱ)先證明A1E⊥CD,A1E⊥B1D,即可證明A1E⊥平面B1CD,從而證明平面A1C1E⊥平面B1CD.
解答 證明:(Ⅰ)如圖所示,
連接BC1,交B1C于點F,連接DF,則F是BC1的中點,
∵D是AB的中點,∴DF∥AC1,
∵AC1?平面B1CD,DF?平面B1CD,
∴AC1∥平面B1CD;
(Ⅱ)∵AC=BC,D是AB的中點,∴CD⊥AB;
∵在直三棱柱ABC-A1B1C1中,
側(cè)面ABB1A1⊥底面ABC,且交線為AB,
∴CD⊥平面ABB1A1,
又A1E?平面ABB1A1,
∴A1E⊥CD;
∵矩形ABB1A1中,A1B1=AB=$\sqrt{3}$,BB1=AA1=3,
B1E=$\frac{1}{6}$BB1=$\frac{1}{2}$,BD=$\frac{1}{2}$AB,
∴$\frac{{{A}_{1}B}_{1}}{{B}_{1}B}$=$\frac{\sqrt{3}}{3}$,$\frac{{B}_{1}E}{BD}$=$\frac{\sqrt{3}}{3}$;
∵∠A1B1E=∠B1BD=90°,
∴△A1B1E∽△B1BD,
∴∠B1A1E=∠BB1D;
∴∠B1A1E+∠A1B1D=∠BB1D+∠A1B1D=∠A1B1B=90°,
∴A1E⊥B1D;
∵CD∩B1D=D,CD?平面B1CD,B1D?平面B1CD,
∴A1E⊥平面B1CD;
∵A1E?平面A1C1E,
∴平面A1C1E⊥平面B1CD.
點評 本題考查了空間中的線面平行,線面垂直與面面垂直的判斷與性質(zhì)的應(yīng)用問題,也考查了邏輯推理能力,是綜合性題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$] | B. | [0,1) | C. | [0,$\frac{1}{2}$) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com