【解析】A.設(shè)
,所以是偶函數(shù),所以選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
有編號(hào)為,,…的10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù):
其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。
(Ⅰ)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機(jī)抽取2個(gè).
(。┯昧慵木幪(hào)列出所有可能的抽取結(jié)果;
(ⅱ)求這2個(gè)零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
在四棱錐中,平面,底面為矩形,.
(Ⅰ)當(dāng)時(shí),求證:;
(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分
又,得證。
第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,又………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
為了了解某市工人開展體育活動(dòng)的情況,擬采用分層抽樣的方法從A,B,C三個(gè)區(qū)中抽取7個(gè)工廠進(jìn)行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個(gè)工廠
(Ⅰ)從A,B,C區(qū)中分別抽取的工廠個(gè)數(shù);
(Ⅱ)若從抽取的7個(gè)工廠中隨機(jī)抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,計(jì)算這2個(gè)工廠中至少有1個(gè)來自A區(qū)的概率.
【解析】本試題主要考查了統(tǒng)計(jì)和概率的綜合運(yùn)用。
第一問工廠總數(shù)為18+27+18=63,樣本容量與總體中的個(gè)體數(shù)比為7/63=1/9…3分
所以從A,B,C三個(gè)區(qū)中應(yīng)分別抽取的工廠個(gè)數(shù)為2,3,2。
第二問設(shè)A1,A2為在A區(qū)中的抽得的2個(gè)工廠,B1,B2,B3為在B區(qū)中抽得的3個(gè)工廠,
C1,C2為在C區(qū)中抽得的2個(gè)工廠。
這7個(gè)工廠中隨機(jī)的抽取2個(gè),全部的可能結(jié)果有1/2*7*6=32種。
隨機(jī)的抽取的2個(gè)工廠至少有一個(gè)來自A區(qū)的結(jié)果有A1,A2),A1,B2),A1,B1),
A1,B3)A1,C2),A1,C1), …………9分
同理A2還能給合5種,一共有11種。
所以所求的概率為p=11/21
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點(diǎn),,.
(1)求證:平面;
(2)求二面角的大。
【解析】第一問利用線面垂直的判定定理和建立空間直角坐標(biāo)系得到法向量來表示二面角的。
第二問中,以A為原點(diǎn),如圖所示建立直角坐標(biāo)系
,,
設(shè)平面FAE法向量為,則
,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省濟(jì)寧市高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于.
(1)求證:;
(2)若四邊形ABCD是正方形,求證;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個(gè)三角函數(shù)值。
【解析】第一問中,利用由圓柱的性質(zhì)知:AD平行平面BCFE
又過作圓柱的截面交下底面于.∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF 。粒摹危牛
第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形 又
BC、AE是平面ABE內(nèi)兩條相交直線
第三問中,設(shè)正方形ABCD的邊長(zhǎng)為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE
又過作圓柱的截面交下底面于.∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF 。粒摹危牛
(2) 四邊形ABCD是正方形 又
BC、AE是平面ABE內(nèi)兩條相交直線
(3)設(shè)正方形ABCD的邊長(zhǎng)為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com