【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線交于點(diǎn),曲線與軸交于點(diǎn),求線段的中點(diǎn)到點(diǎn)的距離.
【答案】(1),;(2)
【解析】分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到曲線和直角坐標(biāo)方程,
(2)寫出曲線的參數(shù)方程,代入曲線的直角坐標(biāo)方程,根據(jù)根與系數(shù)的關(guān)系,即可求解.
詳解:(1)曲線的極坐標(biāo)方程可以化為:,
所以曲線的直角坐標(biāo)方程為:,
曲線的極坐標(biāo)方程可以化為:,
所以曲線的直角坐標(biāo)方程為:;
(2)因?yàn)辄c(diǎn)的坐標(biāo)為,的傾斜角為,
所以的參數(shù)方程為:(為參數(shù)),
將的參數(shù)方程代入曲線的直角坐標(biāo)方程得到:,
整理得:,判別式,
中點(diǎn)對應(yīng)的參數(shù)為,所以線段中點(diǎn)到點(diǎn)距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , ,
⑴ 若有零點(diǎn),求 m 的取值范圍;
⑵ 確定 m 的取值范圍,使得有兩個(gè)相異實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,記直線與曲線分別交于兩點(diǎn).
(1)求曲線和的直角坐標(biāo)方程;
(2)證明:成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面是等腰直角三角形,,平面平面,點(diǎn)分別是棱上的點(diǎn),平面平面.
(1)確定點(diǎn)的位置,并說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一布袋中裝有個(gè)小球,甲,乙兩個(gè)同學(xué)輪流且不放回的抓球,每次最少抓一個(gè)球,最多抓三個(gè)球,規(guī)定:由乙先抓,且誰抓到最后一個(gè)球誰贏,那么以下推斷中正確的是( )
A. 若,則乙有必贏的策略B. 若,則甲有必贏的策略
C. 若,則甲有必贏的策略D. 若,則乙有必贏的策略
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,是直線上的個(gè)不同的點(diǎn)(,、,均為非零常數(shù)),其中數(shù)列為等差數(shù)列.
(1)求證:數(shù)列是等差數(shù)列;
(2)若點(diǎn)是直線上一點(diǎn),且,求證:;
(3)設(shè),且當(dāng)時(shí),恒有(和都是不大于的正整數(shù),且)試探索:若為直角坐標(biāo)原點(diǎn),在直線上是否存在這樣的點(diǎn),使得成立?請說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一 廠家在一批產(chǎn)品出廠前要對其進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是: 先從這批產(chǎn)品中任取3件進(jìn)行檢驗(yàn),這3件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為.如果,再從這批產(chǎn)品中任取3件進(jìn)行檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);如果,再從這批產(chǎn)品中任取4件進(jìn)行檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過檢驗(yàn).
假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.
(1) 求這批產(chǎn)品通過檢驗(yàn)的概率;
(2) 已知每件產(chǎn)品檢驗(yàn)費(fèi)用為100元,凡抽取的每件產(chǎn)品都需要檢驗(yàn),對這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為(單位: 元),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(1)若,且在(0,+∞)為增函數(shù),求的取值范圍;
(2)設(shè),若存在,使得,求證:且.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com