解: (1) 假設(shè)函數(shù)f(x)=x屬于集合M,
則存在非零常數(shù)T, 對(duì)任意x∈R, 有成立,
即: x+T=Tx成立.
令x=0, 則T=0, 與題矛盾.
故.
(2) , 且T=2, 則對(duì)任意x∈R, 有,
設(shè), 則,
當(dāng)時(shí), ,
故當(dāng)時(shí), .
(3)當(dāng)k=0時(shí),f(x)=0,顯然f(x)=0∈M.
當(dāng)k≠0時(shí),因?yàn)閒(x)=sinkx∈M,
所以存在非零常數(shù)T,對(duì)任意x∈R,有f(x+T)=T f(x)成立,
即sin(kx+kT)=Tsinkx .
因?yàn)閗≠0,且x∈R,所以kx∈R,kx+kT∈R,
于是sinkx ∈[-1,1],sin(kx+kT) ∈[-1,1],
故要使sin(kx+kT)=Tsinkx .成立,只有T= ,
①當(dāng)T=1時(shí),sin(kx+k)=sinkx 成立,則k=2mπ, m∈Z .
②當(dāng)T=-1時(shí),sin(kx-k)=-sinkx 成立,即sin(kx-k+π)= sinkx 成立,
則-k+π=2mπ, m∈Z ,即k=-(2m-1)π, m∈Z
綜合得,實(shí)數(shù)k的取值范圍是{k|k= nπ, n∈Z}
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
x |
a |
x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
k | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
f(x)+λf(t) |
1+λ |
s+λt |
1+λ |
x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
a |
2 |
b |
2 |
x-1 |
1 |
2 |
1 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com