已知函數(shù)數(shù)學(xué)公式滿足對(duì)任意數(shù)學(xué)公式成立,則a的取值范圍是________.

[2,+∞)
分析:分段函數(shù)為增函數(shù),則每段均為增函數(shù),且在分界點(diǎn)處前一段函數(shù)的值不大于后一段函數(shù)的值,由此構(gòu)造關(guān)于a的不等式,解不等式可得答案.
解答:∵對(duì)任意成立,
∴函數(shù)在R上為增函數(shù)
故當(dāng)x=1時(shí),21≥loga(1+3),且a>1
解得a≥2
故答案為:[2,+∞)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是指數(shù)函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)的單調(diào)性及分段函數(shù)的單調(diào)性,其中正確理解分段函數(shù)的單調(diào)性的意義是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax2+bx+c
x+d
(其中a,b,c,d是實(shí)數(shù)常數(shù),x≠-d)
(1)若a=0,函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,3)成中心對(duì)稱,求b,d的值;
(2)若函數(shù)f(x)滿足條件(1),且對(duì)任意x0∈[3,10],總有f(x0)∈[3,10],求c的取值范圍;
(3)若b=0,函數(shù)f(x)是奇函數(shù),f(1)=0,f(-2)=-
3
2
,且對(duì)任意x∈[1,+∞)時(shí),不等式f(mx)+mf(x)恒成立,求負(fù)實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的定義域?yàn)镽,且滿足以下條件:1 對(duì)任意的,有;2 對(duì)任意;3

(Ⅰ)求的值;

(Ⅱ)判斷 的單調(diào)性,并說明理由;

(Ⅲ)若 且a,b,c成等比數(shù)列,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)理數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)(其中是實(shí)數(shù)常數(shù),

(1)若,函數(shù)的圖像關(guān)于點(diǎn)(—1,3)成中心對(duì)稱,求的值;

(2)若函數(shù)滿足條件(1),且對(duì)任意,總有,求的取值范圍;

(3)若b=0,函數(shù)是奇函數(shù),,,且對(duì)任意時(shí),不等式恒成立,求負(fù)實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)文數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)(其中是實(shí)數(shù)常數(shù),

(1)若,函數(shù)的圖像關(guān)于點(diǎn)(—1,3)成中心對(duì)稱,求的值;

(2)若函數(shù)滿足條件(1),且對(duì)任意,總有,求的取值范圍;

(3)若b=0,函數(shù)是奇函數(shù),,且對(duì)任意時(shí),不等式恒成立,求負(fù)實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省2010年高三一模模擬(三)數(shù)學(xué)理 題型:選擇題

已知函數(shù).滿足對(duì)任意的都有 成

立,則的取值范圍是                                                                                    (    )

    A.           B.                                        C.        D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案