【題目】在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),點(diǎn),,Q為平面上的動點(diǎn),且,線段的中垂線與線段交于點(diǎn)P.
求的值,并求動點(diǎn)P的軌跡E的方程;
若直線l與曲線E相交于A,B兩點(diǎn),且存在點(diǎn)其中A,B,D不共線,使得,證明:直線l過定點(diǎn).
【答案】(1);(2)詳見解析.
【解析】
由中垂線性質(zhì)可知,根據(jù)橢圓性質(zhì)得出P點(diǎn)軌跡方程;
設(shè),,直線l方程為,與橢圓方程聯(lián)立方程,利用根與系數(shù)關(guān)系得出關(guān)系式,由可知,根據(jù)斜率公式化簡即可得出m,n的關(guān)系,從而得出直線l的定點(diǎn)坐標(biāo).
解:由已知,,,
依題意有:,
,
故點(diǎn)P的軌跡是以,為焦點(diǎn),長軸長為4的橢圓,即,,,
故點(diǎn)P的軌跡E的方程為.
令,,
因A,B,D不共線,故l的斜率不為0,
令l的方程為:,則由得,
,
則,,
,,
即,整理得,
而,代入得:
,
把代入得:,
當(dāng)時(shí),得:,
此時(shí)l的方程為:,過定點(diǎn).
當(dāng)時(shí),亦滿足,此時(shí)l的方程為:.
綜上所述,直線l恒過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:的離心率為,并且橢圓經(jīng)過點(diǎn)P(1,),直線l的方程為x=4.
(1)求橢圓的方程;
(2)已知橢圓內(nèi)一點(diǎn)E(1,0),過點(diǎn)E作一條斜率為k的直線與橢圓交于A,B兩點(diǎn),交直線l于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù),使得k1+k2=k3?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=ax+(1﹣a)lnx+(a∈R)
(Ⅰ)當(dāng)a=0時(shí),求 f(x)的極值;
(Ⅱ)當(dāng)a<0時(shí),求 f(x)的單調(diào)區(qū)間;
(Ⅲ)方程 f(x)=0的根的個(gè)數(shù)能否達(dá)到3,若能請求出此時(shí)a的范圍,若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:函數(shù)有兩個(gè)零點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的普通方程為,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求的參數(shù)方程與的直角坐標(biāo)方程;
(II)射線與交于異于極點(diǎn)的點(diǎn),與的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,問:是否存在實(shí)數(shù)c使得對所有成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是邊長為6的等邊三角形,點(diǎn)D、E分別是邊AB、AC上的點(diǎn),且滿足,如圖,將沿DE折成四棱錐,且有平面平面BCED.
求證:平面BCED;
記的中點(diǎn)為M,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com