函數(shù)y=tan(
π
2
x-
π
3
)
的最小正周期是
 
分析:由已知中函數(shù)的解析為y=tan(
π
2
x-
π
3
)
,我們可以求出對(duì)應(yīng)ω值,代入T=
π
ω
,即可得到函數(shù)y=tan(
π
2
x-
π
3
)
的最小正周期.
解答:解:∵函數(shù)y=tan(
π
2
x-
π
3
)

∴ω=
π
2

∴T=
π
π
2
=2
故答案為:2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是正切函數(shù)的周期性,其中根據(jù)函數(shù)的解析式求出ω值,是解答本題的關(guān)鍵,在解答過(guò)程中易將正切型函數(shù)的周期誤認(rèn)為
ω
而產(chǎn)生錯(cuò)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=tan(2x+
π
6
)的周期是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=tan(
π
4
x-
π
2
)
(0<x<4)的圖象如圖所示,A為圖象與x軸的交點(diǎn),過(guò)點(diǎn)A的直線l與函數(shù)的圖象交于B、C兩點(diǎn),則(
OB
+
OC
)•
OA
=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=tan(2x-
π
4
)的單調(diào)增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列結(jié)論中:
①函數(shù)y=sin(kπ-x)(k∈Z)為奇函數(shù);
②函數(shù)y=tan(2x+
π
6
)
的圖象關(guān)于點(diǎn)(
π
12
,0)
對(duì)稱;
③函數(shù)y=cos(2x+
π
3
)
的圖象的一條對(duì)稱軸為x=-
2
3
π;
④若tan(π-x)=2,則cos2x=
1
5

其中正確結(jié)論的序號(hào)為
①③④
①③④
(把所有正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),且函數(shù)y=tan
πx
6
-f(x)
的圖象過(guò)點(diǎn)(2,
3
-
1
3
)
,則函數(shù)y=f-1(x)-(arcsinx+arccosx)的圖象一定過(guò)點(diǎn)
(
1
3
,2-
π
2
)
(
1
3
,2-
π
2
)

查看答案和解析>>

同步練習(xí)冊(cè)答案