函數(shù)f(x)=sin x-數(shù)學(xué)公式cos x(x∈[-π,0])的單調(diào)遞增區(qū)間是


  1. A.
    [-π,-數(shù)學(xué)公式]
  2. B.
    [-數(shù)學(xué)公式,-數(shù)學(xué)公式]
  3. C.
    [-數(shù)學(xué)公式,0]
  4. D.
    [-數(shù)學(xué)公式,0]
D
分析:先利用兩角和公式對(duì)函數(shù)解析式化簡(jiǎn)整理,進(jìn)而根據(jù)正弦函數(shù)的單調(diào)性求得答案.
解答:f(x)=sin x-cos x=2sin(x-),
因x-∈[-π,-],
故x-∈[-π,-],
得x∈[-,0],
故選D
點(diǎn)評(píng):本題主要考查了正弦函數(shù)的單調(diào)性.對(duì)于正弦函數(shù)的單調(diào)性、奇偶性、對(duì)稱(chēng)性等特點(diǎn)應(yīng)熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角a的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn)P(-3,
3
).
(1)定義行列式
.
ab
cd
.
=a•d-b•c,解關(guān)于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函數(shù)f(x)=sin(x+a)+cos(x+a)(x∈R)的圖象關(guān)于直線(xiàn)x=x0對(duì)稱(chēng),求tanx0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過(guò)點(diǎn)(
π8
,-1).
(1)求φ;  
(2)求函數(shù)y=f(x)的周期和單調(diào)增區(qū)間;
(3)在給定的坐標(biāo)系上畫(huà)出函數(shù)y=f(x)在區(qū)間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分圖象如圖,則
(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(wx+
π
2
)(w>0),其圖象上相鄰的兩個(gè)最低點(diǎn)間的距離為2π.
(1)求ω的值及f(x)
(2)若a∈(-
π
3
π
2
),f(a+
π
3
)=
1
3
,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•紅橋區(qū)一模)函數(shù)f(x)=sin(2ωx+
π
6
)+1(x∈R)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為1,則正數(shù)ω的值等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案