【題目】已知函數(shù).

1)若曲線處的切線方程為,求實數(shù),的值;

2)若,且在區(qū)間上恒成立,求實數(shù)的取值范圍;

3)若,且,討論函數(shù)的單調(diào)性.

【答案】12.3)見解析

【解析】

1先求導(dǎo),再由求解..

2)由,,在區(qū)間上恒成立,轉(zhuǎn)化為上恒成立,令,再用導(dǎo)數(shù)法求解.

3)由,,求導(dǎo)得,令

,兩種情況討論.

1)由題意,得,

,解得.

2)當(dāng)時,,在區(qū)間上恒成立,

上恒成立,

設(shè),則,

,可得單調(diào)遞增;

,可得,單調(diào)遞減;

所以,即,故.

3)當(dāng)時,,

,

當(dāng)時,

所以,在內(nèi),∴,∴單調(diào)遞增,

內(nèi),∴,∴單調(diào)遞減.

當(dāng)時,,

,解得,

所以,在內(nèi),,∴

單調(diào)遞增;

內(nèi),,∴,

單調(diào)遞減.

綜上, 當(dāng)時, 上單調(diào)遞增,在單調(diào)遞減.

當(dāng)時,∴單調(diào)遞增;在∴單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線Cy=,D為直線y=上的動點(diǎn),過DC的兩條切線,切點(diǎn)分別為A,B.

1)證明:直線AB過定點(diǎn):

2)若以E(0,)為圓心的圓與直線AB相切,且切點(diǎn)為線段AB的中點(diǎn),求四邊形ADBE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在處的切線與函數(shù)的圖象在處的切線互相平行.

1)求的值;

2)若恒成立,求實數(shù)的取值范圍;

3)若數(shù)列的前項和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110120),[120,130)[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;

2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為數(shù)學(xué)尖子生,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為數(shù)學(xué)尖子生與性別有關(guān)?

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某校甲、乙、丙三個興趣小組的學(xué)生人數(shù)分別為36,2424.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠質(zhì)量的調(diào)查.

1)應(yīng)從甲、乙、丙三個興趣小組的學(xué)生中分別抽取多少人?

2)若抽出的7人中有3人睡眠不足,4人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.表示抽取的3人中睡眠充足的學(xué)生人數(shù),求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件求方程.

(1)已知頂點(diǎn)的坐標(biāo)為,求外接圓的方程;

(2)若過點(diǎn)的直線被圓所截的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E)的焦點(diǎn)為F,圓C:,點(diǎn)為拋物線上一動點(diǎn).當(dāng)時,的面積為.

1)求拋物線E的方程;

2)若,過點(diǎn)P作圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)為奇函數(shù),且有極小值.

1)求實數(shù)的值;

2)求實數(shù)的取值范圍;

3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若,求實數(shù)取值的集合;

(2)證明:

查看答案和解析>>

同步練習(xí)冊答案