已知θ∈(
π
2
,π)
,化簡:
1-cosθ
1+cosθ
+
1+cosθ
1-cosθ
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:原式被開方數(shù)變形后,利用同角三角函數(shù)間的基本關(guān)系及完全平方公式變形,計算即可得到結(jié)果.
解答: 解:∵θ∈(
π
2
,π),
∴1-cosθ>0,1+cosθ>0,sinθ>0,
則原式=
(1-cosθ)2
(1+cosθ)(1-cosθ)
+
(1+cosθ)2
(1+cosθ)(1-cosθ)
=
|1-cosθ|
|sinθ|
+
|1+cosθ|
|sinθ|
=
1-cosθ+1+cosθ
sinθ
=
2
sinθ
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如圖所示,試根據(jù)圖中所標出的尺寸(單位:cm),可得這個幾何體的表面積是( 。
A、18+
3
B、18+2
3
C、24+2
3
D、24+2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+
3
y-2=0被圓(x-1)2+y2=1所截得的弦長為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點P(-1,2),
(1)若l的縱截距是其橫截距的一半,求直線l的一般式方程;
(2)若l的傾斜角是直線y=
3
4
x+
1
2
的傾斜角的一半,求直線l的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在同一平面內(nèi)的兩個向量
a
=(
3
sinx+cos(ωx+
π
3
),-1)
,
b
=(1,1-cos(ωx-
π
3
))
,其中ω>0,x∈R.函數(shù)f(x)=
a
b
,且函數(shù)f(x)的最小正周期為π.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移
π
6
個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在[0,
π
2
]
上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
6
≤β<
π
4
,3sin2α-2sin2β=2sinα,試求sin2β-
1
2
sinα
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點C(4,1),
(1)若直線l在兩坐標軸上截距相等,求直線l的方程.
(2)若直線l分別與x軸、y軸的正半軸相交于A,B兩點,O為坐標原點,記|OA|=a,|OB|=b,求a+b的最小值,并寫出此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,向量
OA
=
a
OB
=
b
,
OC
=
c
,A,B,C在一條直線上,且
AC
=-3
CB
,則
c
=
 
(用
a
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
cos(sinx)
的定義域為R,則(  )
A、f(x)是奇函數(shù)
B、f(x)是偶函數(shù)
C、f(x)即是奇函數(shù)又是偶函數(shù)
D、f(x)即不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

同步練習冊答案