在平面直角坐標(biāo)系xOy中,不等式組
x≥0
y≥0
x+y-8≤0
所表示的平面區(qū)域是α,不等式組
0≤x≤4
0≤y≤10
所表示的平面區(qū)域是β.從區(qū)域α中隨機(jī)取一點(diǎn)P(x,y),則P為區(qū)域β內(nèi)的點(diǎn)的概率是
 
考點(diǎn):簡單線性規(guī)劃
專題:概率與統(tǒng)計(jì)
分析:作出不等式組對應(yīng)的平面區(qū)域,求出對應(yīng)區(qū)域的面積,利用幾何概型的概率公式即可得到結(jié)論.
解答: 解:作出不等式組組
x≥0
y≥0
x+y-8≤0
所表示的平面區(qū)域是α,為直角三角形OAB,其中A(0,8),B(8,0),
則對應(yīng)的面積S=
1
2
×8×8=32
,
不等式組
0≤x≤4
0≤y≤10
所表示的平面區(qū)域是β,落在直角三角形OAB的區(qū)域?yàn)樘菪蜲ACD,
其中D(4,0),C(4,4),
則梯形OACD的面積S=
4+8
2
×4=24

故從區(qū)域α中隨機(jī)取一點(diǎn)P(x,y),則P為區(qū)域β內(nèi)的點(diǎn)的概率P=
24
32
=
3
4
,
故答案為:
3
4
點(diǎn)評:本題主要考查幾何概型的概率的計(jì)算,利用線性規(guī)劃的知識作出對應(yīng)的平面區(qū)域即可得到結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中
(1)若(m+x)5的展開式中x3項(xiàng)的系數(shù)為160,那么m的值為4;
(2)過曲線y=
1
2
x3上的點(diǎn)(1,
1
2
)作曲線的切線,則該切線與圓O2:x2+y2=1相交弦長為
6
13
13
;
(3)已知隨機(jī)變量X服從正態(tài)分布N(2,32),且P(-1<X<5)=0.6826,則P(X≥5)=0.1587;
(4)對于函數(shù)f(x),定義:若對于任意的實(shí)數(shù)a,b,c有f(a),f(b),f(c)都是某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”,據(jù)此定義可知函數(shù)f(x)=2,(x∈R)是“可構(gòu)造三角形函數(shù)”.
其中正確的命題有
 
(請把所有正確的命題的序號都填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的側(cè)面積=
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a+b=2
a
+6
b
-10,那么a-2b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

祖暅原理對平面圖形也成立,即夾在兩條平行線間的兩個(gè)平面圖形被任意一條平行于這兩條直線的直線截得的線段總相等,則這兩個(gè)平面圖形面積相等.利用這個(gè)結(jié)論解答問題:函數(shù)f(x)=2x、g(x)=2x-1與直線x=0,x=1所圍成的圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α,β的終邊在第一象限,則“α>β”是“sinα>sinβ”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={0,1,2,3,4,5},B={x∈R|x≥2},則A∩(∁UB)=(  )
A、{0,1}
B、{1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U為實(shí)數(shù)集R,集合A={x|0<x<2},集合B={x|lgx>0},則圖中陰影部分表示的集合為( 。
A、{0|0<x≤1}
B、{x|0<x<2}
C、{x|x<1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=2,b+c=7,cosB=-
1
4
,則b=( 。
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊答案