若正數(shù)項(xiàng)數(shù)列的前項(xiàng)和為,首項(xiàng),點(diǎn),在曲線上.
(1)求,;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),表示數(shù)列的前項(xiàng)和,若恒成立,求及實(shí)數(shù)的取值范圍.
(1);(2);(3).
【解析】
試題分析:(1)根據(jù)已知點(diǎn),在曲線上,代入曲線,得到與的關(guān)系,再根據(jù),分別取和代入關(guān)系式,得到關(guān)于與的方程組,解方程,得到結(jié)果;(2)由(1)得的,因?yàn)槭钦?xiàng)數(shù)列,所以兩邊開方,得與的地推關(guān)系式,從而判定數(shù)列形式,得出的通項(xiàng)公式,再根據(jù),得出的通項(xiàng)公式;(3)代入的通項(xiàng)公式得到,然后裂項(xiàng),經(jīng)過裂項(xiàng)相消,得到的前項(xiàng)和,,通過分離常數(shù)可以判定的單調(diào)性,求出最值,若恒成立,那么,得到的范圍.此題計(jì)算相對(duì)較大,屬于中檔題.
試題解析:(1)解:因?yàn)?/span>點(diǎn),在曲線上,所以.
分別取和,得到,
由解得,. 4分
(2)解:由得.
數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,所以, 6分
由,當(dāng)時(shí),,
所以. 8分
(3)解:因?yàn)?/span>,
所以, 11分
顯然是關(guān)于的增函數(shù), 所以有最小值,
因?yàn)?/span>恒成立,所以,
因此,實(shí)數(shù)的取值范圍是,. 13分
考點(diǎn):1.等差數(shù)列的定義;2.已知求;3.裂項(xiàng)相消;4.函數(shù)最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津河西區(qū)高三第一學(xué)期形成性質(zhì)量調(diào)查理科數(shù)學(xué)試卷(解析版) 題型:解答題
若正數(shù)項(xiàng)數(shù)列的前項(xiàng)和為,首項(xiàng),點(diǎn),在曲線上.
(1)求,;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),表示數(shù)列的前項(xiàng)和,若恒成立,求及實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省珠海市高三9月摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
若正數(shù)項(xiàng)數(shù)列的前項(xiàng)和為,首項(xiàng),點(diǎn)在曲線上.
(1)求;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),表示數(shù)列的前項(xiàng)和,若恒成立,求及實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高二第三次考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分10分)
已知是等差數(shù)列,是各項(xiàng)為正數(shù)的等比數(shù)列,且,,.
(Ⅰ)求和通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三調(diào)研理科數(shù)學(xué)試卷(3) 題型:解答題
設(shè)函數(shù),已知不論為何實(shí)數(shù)時(shí),恒有,對(duì)于正數(shù)數(shù)列,其前項(xiàng)和()
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)是否存在等比數(shù)列,使得對(duì)一切正整數(shù)都成立,并證明你的結(jié)論;
(4)若,且數(shù)列的前項(xiàng)和為,比較與的大小。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com