已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)在直線上.數(shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=3(2an-11)(2bn-1),數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn>對(duì)一切n∈N*都成立的最大正整數(shù)k的值.
解(1)由已知得:,所以Sn=.
當(dāng)n≥2時(shí),
an=Sn-Sn-1==n+5,
當(dāng)n=1時(shí),a1=S1=6也符合上式.
所以an=n+5(n∈N*).
由bn+2-2bn+1+bn=0(n∈N*)知{bn}是等差數(shù)列.
由{bn}的前9項(xiàng)和為153,可得:,
求得b5=17,又b3=11,
所以{bn}的公差,首項(xiàng)b1=5,所以bn=3n+2.
(2)
所以
因?yàn)閚增大,Tn增大,所以{Tn}是遞增數(shù)列,
所以Tn≥T1=.
Tn>對(duì)一切n∈N*都成立,只要T1=>,
所以k<19,則kmax=18.
即使不等式Tn>對(duì)一切n∈N*都成立的最大正整數(shù)為18.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、16 | B、8 | C、4 | D、不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com