9.函數(shù)f(x)=x2-x-2,x∈[-5,5],在定義域內(nèi)任取一點(diǎn)x0,使f(x0)>0的概率是( 。
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{7}{10}$D.$\frac{4}{5}$

分析 令f(x)=x2-x-2>0,解得:x∈[-5,-1)∪(2,5],代入古典概型概率計(jì)算公式,可得答案.

解答 解:令f(x)=x2-x-2>0,
解得:x∈[-5,-1)∪(2,5],
故在定義域內(nèi)任取一點(diǎn)x0,使f(x0)>0的概率P=$\frac{(-1)-(-5)+5-2}{5-(-5)}$=$\frac{7}{10}$,
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是幾何概型,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資、薪金所得不超過(guò)3500元的部分不必納稅,超過(guò)3500的部分為全月應(yīng)納稅所得額.此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
全月應(yīng)納稅所得額稅率(%)
不超過(guò)1500元的部分3
超過(guò)1500元至4500元的部分10
超過(guò)4500元至9000元的部分20
凱里市某市民10月份應(yīng)交納稅額為256元,那么他當(dāng)月的工資、薪金所得是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在二項(xiàng)式($\root{3}{{x}^{2}}$-$\frac{1}{2}$)n的展開(kāi)式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則n=8;展開(kāi)式中的第4項(xiàng)為-7${x}^{\frac{10}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)Sn=1-3+5-7+…+(-1)n-1(2n-1)(n∈N*),則Sn等于( 。
A.nB.-nC.(-1)nnD.(-1)n-1n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=x${\;}^{3}-\frac{9}{2}{x}^{2}+6x-a$.
(1)求f(x)的極值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.變式訓(xùn)練:已知函數(shù)f(x)=ex-$\frac{2}{x}$+1.求證:
(1)函數(shù)f(x)在(0,+∞)上為增函數(shù);
(2)方程f(x)=0沒(méi)有負(fù)實(shí)數(shù)限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.實(shí)數(shù)x,y滿足的不等式組$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$所表示的平面區(qū)域面積為(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=2f′(1)lnx-x,則f(x)的解析式為f(x)=2lnx-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知指數(shù)函數(shù)y=g(x)滿足g(3)=8,定義域?yàn)镽的函數(shù)f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函數(shù).
(1)確定y=f(x)和y=g(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對(duì)任意x∈[-5,-1]都有f(1-x)+f(1-2x)>0成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案