【題目】第一屆“一帶一路”國際合作高峰論壇于2017年5月14日至15日在北京舉行,為了保護各國國家元首的安全,某部門將5個安保小組安排到指定的三個區(qū)域內(nèi)工作,且每個區(qū)域至少有一個安保小組,則這樣的安排方法共有________

【答案】

【解析】

將5個安保小組再分成三組,每組的安保小組個數(shù)為:,利用平均分堆方法計算分組個數(shù),再將分好的安保小組安排到指定的三個區(qū)域內(nèi),利用排列知識及分步計算原理得解。

將5個安保小組再分成三組,每組的安保小組個數(shù)為:.

這種分組方法一共有,

再將分好的安保小組安排到指定的三個區(qū)域內(nèi)共有種不同的分法.

所以某部門將5個安保小組安排到指定的三個區(qū)域內(nèi)工作,且每個區(qū)域至少有一個安保小組的安排方法共有種。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市理論預(yù)測2014年到2018年人口總數(shù)(單位:十萬)與年份(用表示)的關(guān)系如表所示:

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的回歸方程;

(3)據(jù)此估計2019年該城市人口總數(shù).

(參考數(shù)據(jù):

參考公式:線性回歸方程為,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,(其中 為自然對數(shù)的底數(shù), …….

1)令,若對任意的恒成立,求實數(shù)的值;

2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作,它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個,問該若干?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )

A. 120 B. 84 C. 56 D. 28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一定點,及一定直線,以動點為圓心的圓過點,且與直線相切

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設(shè)在直線上,直線,分別與曲線相切于,為線段的中點求證:,且直線恒過定點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,底面,的中點,是線段上的一點,且,連接,,.

(1)求證:平面

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的正方形的中心為為圓上的點,,,分別是以為底邊的等腰三角形.沿虛線剪開后,分別以為折痕折起,,,使得重合,得到一個四棱錐.當(dāng)該四棱錐的側(cè)面積是底面積的2倍時,該四棱錐的外接球的表面積為__________

查看答案和解析>>

同步練習(xí)冊答案