分析:(1)由負(fù)數(shù)沒有平方根得到1-x與x都大于等于0,列出關(guān)于x的不等式組,求出不等式組的解集即可得到函數(shù)的定義域,又因為函數(shù)為減函數(shù),所以把x=0代入函數(shù)解析式得到函數(shù)的最大值,把x=1代入函數(shù)解析式得到函數(shù)的最小值,即可得到函數(shù)的值域;
(2)根據(jù)負(fù)數(shù)和0沒有對數(shù)得到真數(shù)x2-2x+1大于0,即可求出x的范圍即為函數(shù)的定義域,根據(jù)x2-2x+1大于0得到函數(shù)的值域為全體實數(shù);
(3)根據(jù)表格得到函數(shù)的定義域為元素0,1,2,3,4,5組成的集合,值域為元素2,3,4,5,6,7組成的集合.
解答:解:(1)要使函數(shù)有意義,則
∴0≤x≤1,函數(shù)的定義域為[0,1]
∵函數(shù)y=
-
為減函數(shù),
∴函數(shù)的值域為[-1,1].
(2)要使函數(shù)有意義,則x
2-2x+1>0,∴x≠1,
函數(shù)的定義域為{x|x≠1,x∈R}.
∵x
2-2x+1∈(0,+∞),
∴函數(shù)的值域為R.
(3)函數(shù)的定義域為{0,1,2,3,4,5},
函數(shù)的值域為{2,3,4,5,6,7}.
點評:此題考查了函數(shù)定義域及值域的求法,是一道綜合題.