精英家教網 > 高中數學 > 題目詳情
設數列{an}的前n項和為Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3…,其中A,B為常數.數列{an}的通項公式為
an=5n-4
an=5n-4
分析:利用s1,s2,s3,結合(5n-8)Sn+1-(5n+2)Sn=An+B,推出方程組直接求A與B的值.化簡(5n-8)Sn+1-(5n+2)Sn=An+B,得到(5n-3)sn+2-(5n+7)sn+1=-20n-28,然后利用等差數列的性質,證明數列{an}為等差數列.由此能求出數列{an}的通項公式.
解答:解:由已知得s1=a1=1,s2=a1+a2=7,s3=a1+a2+a3=18
由(5n-8)sn+1-(5n+2)sn=An+B知
-3s2-7s1=A+B
2s3-12s2=2A+B
A+B=-28
2A+B=-48
⇒A=-20,B=-8

∴(5n-8)sn+1-(5n+2)sn=-20n-8①
所以(5n-3)sn+2-(5n+7)sn+1=-20n-28②
②-①得(5n-3)sn+2-(10n-1)sn+1+(5n+2)sn=-20③
所以(5n+2)sn+3-(10n+9)sn+2+(5n+7)sn+1=-20④
④-③得(5n+2)sn+3-(15n+6)sn+2+(15n+6)sn+1-(5n+2)sn=0
因為an+1=sn+1-sn,所以(5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0
又因為5n+2≠0,所以an+3-2an+2+an+1=0,即an+3-an+2=an+2-an+1,n≥1,
又a3-a2=a2-a1=5.∴數列{an}為等差數列,公差為5.
∴an=a1+(n-1)d
=1+5(n-1)
=5n-4.
故答案為:5n-4.
點評:本題考查數列{an}的通項公式的求法是,考查數列中系數的求法,考查計算能力,注意驗證數列的首項是否滿足數列是等差數列.解本題的關鍵是理解恒等式
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數列{an}的通項公式;
(2)設bn=an(2n-1),求數列{bn}的前n項的和.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列an的前n項的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3;
(2)求數列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數列bn的前n項的和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關系式;
(Ⅱ)求數列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內的整點(整點即橫坐標和縱坐標均為整數的點)個數為an(n∈N*
(1)寫出an+1與an的關系(只需給出結果,不需要過程),
(2)求數列{an}的通項公式;
(3)設數列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鄭州一模)設數列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習冊答案