雙曲線=1的漸近線方程為_(kāi)_______.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知橢圓C:=1(a>b>0)的離心率e=,一條準(zhǔn)線方程為x=

(1) 求橢圓C的方程;

(2) 設(shè)G、H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.

① 當(dāng)直線OG的傾斜角為60°時(shí),求△GOH的面積;

② 是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知F1、F2是橢圓C的左、右焦點(diǎn),點(diǎn)P在橢圓上,且滿足PF1=2PF2,∠PF1F2=30°,則橢圓的離心率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G: (c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

(1) 若橢圓C經(jīng)過(guò)兩點(diǎn),求橢圓C的方程;

(2) 當(dāng)c為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求的值(O是坐標(biāo)原點(diǎn));

(3) 若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知橢圓在橢圓上.

(1) 求橢圓的離心率;

(2) 設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn).若點(diǎn)Q在橢圓上且滿足AQ=AO,求直線OQ的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知雙曲線=1(a>0,b>0)的兩條漸近線方程為y=±x,若頂點(diǎn)到漸近線的距離為1,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知雙曲線x2-y2=1,點(diǎn)F1,F(xiàn)2為其兩個(gè)焦點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),若PF1⊥PF2,則PF1+PF2=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)同時(shí)滿足條件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是與n無(wú)關(guān)的常數(shù))的無(wú)窮數(shù)列{bn}叫“特界” 數(shù)列.

(1) 若數(shù)列{an}為等差數(shù)列,Sn是其前n項(xiàng)和,a3=4,S3=18,求Sn;

(2) 判斷(1)中的數(shù)列{Sn}是否為“特界” 數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知f(n)=

(1) 當(dāng)n=1,2,3時(shí),分別比較f(n)與g(n)的大小(直接給出結(jié)論);

(2) 由(1)猜想f(n)與g(n)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案