定長(zhǎng)為的線段AB的兩端點(diǎn)都在雙曲線的右支上,則AB的中點(diǎn)M的橫坐標(biāo)的最小值為
[     ]
A.
B.
C.
D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定長(zhǎng)為3的線段AB兩端點(diǎn)A、B分別在x軸,y軸上滑動(dòng),M在線段AB上,且
AM
=2
MB

(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)過(guò)F(0,
3
)
且不垂直于坐標(biāo)軸的動(dòng)直線l交軌跡C于A、B兩點(diǎn),問(wèn):線段OF上是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省八校高三第二次聯(lián)考數(shù)學(xué)(理) 題型:解答題

定長(zhǎng)為3的線段AB兩端點(diǎn)A、B分別在軸,軸上滑動(dòng),M在線段AB上,且
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)過(guò)且不垂直于坐標(biāo)軸的動(dòng)直線交軌跡C于A、B兩點(diǎn),問(wèn):線段上是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆湖北省高二下學(xué)期期末聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

定長(zhǎng)為3的線段AB兩端點(diǎn)A、B分別在軸,軸上滑動(dòng),M在線段AB上,且

(1)求點(diǎn)M的軌跡C的方程;

(2)設(shè)過(guò)且不垂直于坐標(biāo)軸的動(dòng)直線交軌跡C于A、B兩點(diǎn),問(wèn):線段

是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年浙江省杭州市重點(diǎn)高中高考命題比賽數(shù)學(xué)參賽試卷03(理科)(解析版) 題型:解答題

定長(zhǎng)等于的線段AB的兩個(gè)端點(diǎn)分別在直線上滑動(dòng),線段AB中點(diǎn)M的軌跡為C;
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)(0,1)的直線l與軌跡C交于P,Q兩點(diǎn),問(wèn):在y軸上是否存在定點(diǎn)T,使得不論l如何轉(zhuǎn)動(dòng),為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案